电解质
离子液体
锂(药物)
碳酸乙烯酯
环氧乙烷
离子电导率
乙二醇
聚合物
化学
化学工程
材料科学
盐(化学)
离子键合
碳酸丙烯酯
水溶液
碘化锂
无机化学
离子
高分子化学
作者
Asumi Ishikawa,Namie Ikeda,Shuichi Maeda,Kenta Fujii
摘要
We report a controlled polymer network gel electrolyte based on a multifunctional poly(ethylene glycol) (PEG) prepolymer (herein, tetrafunctional PEGs (tetra-PEGs) and bisfunctional linear PEGs (linear-PEGs)) and an ionic liquid (IL)-based electrolyte solution containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSA) salt. The gel electrolyte was obtained via a gelation reaction, i.e., the Michael addition reaction between maleimide (MA)-terminated tetra-PEGs and thiol (SH)-terminated tetra- or linear-PEGs (termed tetra/tetra-PEG gel or tetra/linear-PEG gel systems), in a LiTFSA/IL solution under noncatalytic conditions at room temperature. For the tetra/linear-PEG system, the gelation reaction depended on the ratio of tetra-PEG-MA and linear-PEG-SH; an optimum terminal MA/SH ratio of 1 : 1 yielded a reaction efficiency (p) of ∼98% (an ideal polymer network structure). The tetra/tetra-PEG system with an MA/SH ratio of 1 : 1 also achieved a reaction efficiency of ∼98%. Time-resolved rheological measurements revealed that the network formation process can be categorized into three steps: (I) oligomer formation at an early stage of the reaction, (II) formation of a roughly linked polymer network with a large mesh size as the reaction proceeded, and (III) full network formation also at the local scale near the gelation completion time. The resulting tetra/linear-PEG ion gel with an optimum MA/SH ratio of 1 : 1 exhibited high stretchability, enduring approximately 10-fold elongation, and superior ion-conducting properties compared with the corresponding IL-based electrolyte solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI