Unsupervised Cluster Analysis and Gene Marker Extraction of scRNA-seq Data Based On Non-Negative Matrix Factorization

聚类分析 矩阵分解 非负矩阵分解 计算机科学 人工智能 相似性(几何) 线性子空间 相似性学习 秩(图论) 数据挖掘 模式识别(心理学) 子空间拓扑 特征向量 无监督学习 机器学习 数学 特征向量 图像(数学) 物理 组合数学 量子力学 几何学
作者
Chuan‐Yuan Wang,Ying-Lian Gao,Xiang-Zhen Kong,Jin‐Xing Liu,Chun-Hou Zheng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 458-467 被引量:19
标识
DOI:10.1109/jbhi.2021.3091506
摘要

The development of single-cell RNA sequencing (scRNA-seq) technology has made it possible to measure gene expression levels at the resolution of a single cell, which further reveals the complex growth processes of cells such as mutation and differentiation. Recognizing cell heterogeneity is one of the most critical tasks in scRNA-seq research. To solve it, we propose a non-negative matrix factorization framework based on multi-subspace cell similarity learning for unsupervised scRNA-seq data analysis (MscNMF). MscNMF includes three parts: data decomposition, similarity learning, and similarity fusion. The three work together to complete the data similarity learning task. MscNMF can learn the gene features and cell features of different subspaces, and the correlation and heterogeneity between cells will be more prominent in multi-subspaces. The redundant information and noise in each low-dimensional feature space are eliminated, and its gene weight information can be further analyzed to calculate the optimal number of subpopulations. The final cell similarity learning will be more satisfactory due to the fusion of cell similarity information in different subspaces. The advantage of MscNMF is that it can calculate the number of cell types and the rank of Non-negative matrix factorization (NMF) reasonably. Experiments on eight real scRNA-seq datasets show that MscNMF can effectively perform clustering tasks and extract useful genetic markers. To verify its clustering performance, the framework is compared with other latest clustering algorithms and satisfactory results are obtained. The code of MscNMF is free available for academic (https://github.com/wangchuanyuan1/project-MscNMF).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到,获得积分10
刚刚
Mine发布了新的文献求助10
1秒前
红领巾选手哟完成签到,获得积分10
1秒前
1秒前
花生糕发布了新的文献求助10
2秒前
小蘑菇应助huifang采纳,获得10
3秒前
3秒前
小鱼发布了新的文献求助10
5秒前
孙天川发布了新的文献求助10
5秒前
ABC发布了新的文献求助10
6秒前
忞嵅完成签到,获得积分10
7秒前
Weaver_312完成签到,获得积分10
8秒前
迷路金连完成签到,获得积分10
8秒前
科研阿廖沙完成签到,获得积分10
9秒前
zd200572完成签到,获得积分10
10秒前
万能图书馆应助孙天川采纳,获得10
12秒前
13秒前
13秒前
CodeCraft应助lieqiang采纳,获得10
14秒前
风大米完成签到 ,获得积分10
14秒前
15秒前
王大雪完成签到 ,获得积分10
17秒前
17秒前
sugar发布了新的文献求助10
17秒前
20秒前
Zack发布了新的文献求助30
21秒前
anan应助Linn_Z采纳,获得10
21秒前
davyean完成签到,获得积分10
21秒前
佟佟完成签到,获得积分10
21秒前
来一杯纯牛奶应助椰椰采纳,获得50
22秒前
22秒前
欣喜尔风发布了新的文献求助10
23秒前
12138完成签到,获得积分10
24秒前
温暖的德地完成签到,获得积分10
25秒前
spp完成签到,获得积分10
25秒前
彭于晏应助坦率凌寒采纳,获得10
25秒前
26秒前
迷路金连关注了科研通微信公众号
27秒前
渔片枫舟叶应助佟佟采纳,获得20
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4403560
求助须知:如何正确求助?哪些是违规求助? 3890068
关于积分的说明 12106899
捐赠科研通 3534786
什么是DOI,文献DOI怎么找? 1939562
邀请新用户注册赠送积分活动 980400
科研通“疑难数据库(出版商)”最低求助积分说明 877260