亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Convolutional Neural Network Based Image Processing Framework for Monitoring the Growth of Soybean Crops

卷积神经网络 计算机科学 深度学习 人工智能 人工神经网络 精准农业 模式识别(心理学) 图像处理 机器学习
作者
Nipuna Chamara A.H.M,Khalid H Alkady,Hongyu Jin,Frank Bai,Ashok Samal,Yufeng Ge
标识
DOI:10.13031/aim.202100259
摘要

Abstract. While information about crops can be derived from many different modalities including hyperspectral imaging, multispectral imaging, fluorescence imaging, 3D laser scanning, etc. low-cost RGB imaging sensors in continuous monitoring of crops is a more practical and feasible alternative. In this research, an image processing pipeline was developed to monitor the growth of soybean crops in a research field of the University of Nebraska-Lincoln using their RGB images collected by overhead-phenocams within 30 days using Raspberry-Pi-Zero with a camera module where images were saved on an SD card. The images were stored in the JPG file format with 1920512 resolution, followed by a denoising step using a pretrained Denoising Deep Convolutional Neural Network (DCNN). Then, a semantic segmentation algorithm developed and named as SoySegNet was used to isolate the canopy of soybean crops from the background. A DeepLab v3+ DCNN was developed using the transfer learning technique based on the ResNet-18 DCNN, to perform the semantic segmentation. The semantic segmentation DCNN was trained with 119 pixel-labeled images and additional images generated using data augmentation techniques (i.e., random translation and reflection). The augmentation step increased the size of the image dataset used in the training, validation, and testing of the DCNN. The SoySegNet was able to identify soybean canopy with a pixel-level accuracy of 94%. Various vegetative indices (i.e., excess green index, excess green minus excess red, vegetative index, the color index of vegetation, visible atmospherically resistant index, red-green-blue vegetation index, modified green, red vegetation index, and normalized difference index) were computed using the segmented field images to monitor the growth rate of soybean crops. Furthermore, the proposed image processing pipeline was extended to count the soybean leaves in the segmented images using a deep neural network based on the You Only Look Once (YOLO) architecture and named as SoyCountNet. The SoyCountNet was trained with the same 119 labeled images used for SoySegNet, where the leaves were labeled using bounding boxes. Again, data augmentation techniques were used to increase the size of the training, validation, and testing data sets. The SoyCountNet consisted of ResNet50 DCNN as a feature extraction network and an object detection subnetwork. The SoyCountNet was able to count soybean leaves with a 0.36 precision in the field-segmented images of the soybean crops. This research demonstrated that the proposed image processing pipeline in conjunction with low-cost RGB imaging devices could provide a reliable and cost-effective framework for continuous crop monitoring. Novel application of this framework would be to generate meaningful data about the crop in real-time in edge computing devices of Low Power Wide Area Network (LPWAN) based agricultural Internet of Things (IoT) sensor networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
研友_LJagd8发布了新的文献求助10
11秒前
Kevin完成签到 ,获得积分10
14秒前
健壮柚子完成签到 ,获得积分10
27秒前
lsl完成签到 ,获得积分10
33秒前
35秒前
38秒前
sumini完成签到,获得积分20
52秒前
研友_LJagd8完成签到,获得积分10
55秒前
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
3分钟前
annis发布了新的文献求助10
3分钟前
annis完成签到,获得积分10
3分钟前
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
wanci应助一只橘子采纳,获得10
4分钟前
李健应助机灵自中采纳,获得10
4分钟前
4分钟前
4分钟前
一只橘子发布了新的文献求助10
4分钟前
一只橘子完成签到,获得积分10
4分钟前
4分钟前
绍成完成签到 ,获得积分10
4分钟前
4分钟前
nannan完成签到 ,获得积分10
5分钟前
赵小倩完成签到 ,获得积分10
5分钟前
林志坚完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助50
5分钟前
qingshu完成签到,获得积分20
5分钟前
5分钟前
5分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
走马观花发布了新的文献求助10
6分钟前
火星的雪完成签到 ,获得积分0
6分钟前
走马观花完成签到,获得积分20
6分钟前
科研兵完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5053413
求助须知:如何正确求助?哪些是违规求助? 4280131
关于积分的说明 13340531
捐赠科研通 4095865
什么是DOI,文献DOI怎么找? 2241947
邀请新用户注册赠送积分活动 1248189
关于科研通互助平台的介绍 1177684