Cost-Effective Marine Fender Design Using an Elastoplastic Support Element: An Investigation

挡泥板 偏转(物理) 结构工程 变形(气象学) 有限元法 产量(工程) 天然橡胶 工程类 材料科学 复合材料 物理 光学
作者
Andrew Metzger
出处
期刊:Journal of waterway, port, coastal, and ocean engineering [American Society of Civil Engineers]
卷期号:147 (5)
标识
DOI:10.1061/(asce)ww.1943-5460.0000661
摘要

This manuscript investigates the potential cost savings of installing a steel elastoplastic element in series, structurally, with a commercial rubber marine fender. Along with cost savings, the results also provide insight into the design requirements for the elastoplastic element. The approach to the study began with calculating abnormal impact energy for common classes of ships. Using that information, reaction force and required deflection for different levels of plastic deformation were determined. As the level of plastic deformation increases, the requirement for the rubber marine fender decreases. This allows the designer to use a smaller, less expensive, marine fender for a given kinetic energy associated with ship impact. The elastoplastic contribution to energy absorption was estimated using a steel reference element that was tested beyond yield. A Ramberg–Osgood model was fitted to the force-deflection data from the test and then scaled to the anticipated reaction for a full-size ship impact. From this, cost and required deformation of the elastoplastic element were compared. There is a clear trend of cost savings with increasing elastoplastic deformation. The results of the analysis indicate that an elastoplastic element installed in series with a fender might reduce fender costs by several thousand USD to over USD 40,000 per fender. To realize such savings, the full-size elastoplastic element will have to tolerate deflections of 100 to 400 mm while supporting the reaction from a ship coming to rest at berth. Commentary on performance for pre- and post-yield conditions is also provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助通~采纳,获得10
刚刚
1秒前
卡比兽完成签到,获得积分10
1秒前
1秒前
Lu关注了科研通微信公众号
1秒前
2秒前
3秒前
丢手绢发布了新的文献求助10
3秒前
卡比兽发布了新的文献求助10
4秒前
Gee给小鱼的求助进行了留言
5秒前
是阿龙呀发布了新的文献求助10
5秒前
土人发布了新的文献求助10
5秒前
6秒前
7秒前
123发布了新的文献求助10
7秒前
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Tourist应助科研通管家采纳,获得150
9秒前
zoe666应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
zoe666应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助150
10秒前
10秒前
糟糕的铁锤完成签到,获得积分0
11秒前
通~发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5157653
求助须知:如何正确求助?哪些是违规求助? 4352786
关于积分的说明 13552773
捐赠科研通 4196145
什么是DOI,文献DOI怎么找? 2301482
邀请新用户注册赠送积分活动 1301266
关于科研通互助平台的介绍 1246394