A Survey on Driver Behavior Analysis From In-Vehicle Cameras

计算机科学 分散注意力 数据收集 任务(项目管理) 方向(向量空间) 分析 范围(计算机科学) 数据科学 人机交互 人工智能 工程类 系统工程 统计 几何学 数学 神经科学 生物 程序设计语言
作者
Jiyang Wang,Weiheng Chai,Archana Venkatachalapathy,Kai Liang Tan,Arya Haghighat,Senem Velipasalar,Yaw Adu-Gyamfi,Anuj Sharma
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10186-10209 被引量:22
标识
DOI:10.1109/tits.2021.3126231
摘要

Distracted or drowsy driving is unsafe driving behavior responsible for thousands of crashes every year. Studying driver behavior has challenges associated with observing drivers in their natural environment. The naturalistic driving study (NDS) has become the most sought-after approach, since it eliminates the bias of a controlled setup, allowing researchers to understand drivers’ behavior in real-world scenarios. Video recordings collected in NDS research are incredibly insightful in identifying driver errors. Computer vision techniques have been used to autonomously analyze video data and classify drivers’ behavior. While computer vision scientists focus on image analytics, NDS researchers are interested in the factors impacting driver behavior. This survey paper makes a concerted effort to serve both communities by comprehensively reviewing studies, describing their data collection, computer vision techniques implemented, and performance in classifying driver behavior. The scope is limited to studies employing at least one camera observing the driver inside a vehicle. Based on their objective, papers have been classified as detecting low-level (e.g. head orientation) or high-level (e.g. distraction detection) driver information. Papers have been further classified based on the datasets they employ. In addition to twelve public datasets, many private datasets have also been identified, and their data collection design is discussed to highlight any impact on model performance. Across each task, algorithms employed and their performance are discussed to establish a baseline. A comparison of different frameworks for NDS video data analytics throws light on the existing gaps in the state-of-the-art that can be addressed by future computer vision research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZbP41L完成签到 ,获得积分10
4秒前
常绝山完成签到 ,获得积分10
4秒前
LTDs完成签到,获得积分10
13秒前
蓝桉完成签到 ,获得积分10
14秒前
轩辕书白完成签到,获得积分10
15秒前
刘zx完成签到,获得积分10
15秒前
谢陈完成签到 ,获得积分10
16秒前
在水一方应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
Shun完成签到 ,获得积分10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
大脸猫完成签到 ,获得积分10
22秒前
无尘完成签到 ,获得积分10
23秒前
江南的云完成签到,获得积分10
24秒前
淡定静白完成签到,获得积分10
24秒前
英俊的铭应助列奥维登采纳,获得10
24秒前
xkhxh完成签到 ,获得积分10
25秒前
翱翔者完成签到 ,获得积分10
27秒前
李健的粉丝团团长应助xxz采纳,获得30
27秒前
胜胜糖完成签到 ,获得积分10
30秒前
火星人完成签到 ,获得积分10
30秒前
叶雨思空完成签到 ,获得积分10
31秒前
ndx1993完成签到 ,获得积分10
34秒前
彩色的过客完成签到 ,获得积分10
36秒前
祯果粒完成签到,获得积分10
37秒前
个性书翠应助123456采纳,获得10
40秒前
无畏完成签到 ,获得积分10
44秒前
沙里飞完成签到 ,获得积分10
46秒前
xxz完成签到,获得积分10
47秒前
47秒前
123456完成签到,获得积分10
54秒前
Ting完成签到,获得积分10
57秒前
寒梅恋雪完成签到 ,获得积分10
59秒前
浅辰完成签到 ,获得积分10
1分钟前
科目三应助未知数采纳,获得10
1分钟前
KKKKKKK完成签到 ,获得积分10
1分钟前
细心的向日葵完成签到,获得积分10
1分钟前
居居侠完成签到 ,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843307
求助须知:如何正确求助?哪些是违规求助? 3385613
关于积分的说明 10540918
捐赠科研通 3106201
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308