StackACPred: Prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach

计算机科学 判别式 支持向量机 人工智能 伪氨基酸组成 特征(语言学) 集合预报 机器学习 模式识别(心理学) 数据挖掘 化学 语言学 生物化学 哲学 二肽
作者
Muhammad Arif,Saeed Ahmed,Fang Ge,Muhammad Kabir,Yaser Daanial Khan,Dong‐Jun Yu,Maha A. Thafar
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:220: 104458-104458 被引量:54
标识
DOI:10.1016/j.chemolab.2021.104458
摘要

Anticancer peptides (ACPs) have been emerged as a potential safe therapeutic agent for treating cancer. Identifying novel ACPs is crucial for understanding deep insight their functional mechanisms and vaccine production. Conventional wet-lab technological methods for finding ACPs are overpriced, slow, and resource-intensive. Thus, fast and accurate ACPs prediction through computational approach is highly desired because of massive peptide sequences accumulated in the post-genomic era. Recently, several intelligent statistical approaches have been designed for discriminating ACPs from non-ACPs. Although remarkable achievements have been accomplished, available methods still have inadequate feature descriptors and learning algorithms, thereby restricting the predictive performance. To address this, we develop a novel predictor called Stack-ACPred for the correct identification of ACPs. More specifically, the proposed method possesses three nominal feature encoding strategies i.e., evolutionary-profile and physicochemical information as segmented position-specific scoring matrix (SegPSSM), pseudo (PsePSSM), and extended pseudo amino acid composition (PseAAC). The extracted features are serially fused and further optimized through a powerful support vector machine recursive feature elimination and correlation bias reduction (SVM-RFE ​+ ​CBR) algorithm. The optimal selected attributes are provided to build the stacking-base ensemble model for targeting effective ACPs. The proposed StackACPred attained 84.45% and 86.21% accuracy based on ACP740 and ACP240 datasets with 5-fold cross-validation test, which was 2.97% and 0.79% higher than other existing studies, respectively. The empirical outcomes of our developed automated tool demonstrate the excellent discriminative power for annotating large scale ACPs in particular and other peptides in general. • We developed an intelligent predictor named StackACPred for correct identification of ACPs. • Three nominal feature encoding strategies on the bases of evolutionary-profile and physicochemical information as: N-Segmentation position-specific scoring matrix (N-SegPSSM), pseudo (PsePSSM), and extended pseudo amino acid composition (PseAAC). • Powerful support vector machine recursive feature elimination and correlation bias reduction (SVM-RFE ​+ ​CBR) algorithm was used to select the optimal features. • LightGMB and stacking-base ensemble classifiers were used for predicting ACPs with k-fold cross-validation test. • StackACPred produced better results than others state-of-the-art predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L912294993发布了新的文献求助10
刚刚
思源应助steven采纳,获得10
1秒前
orixero应助天空没有极限采纳,获得10
3秒前
开朗书雪发布了新的文献求助10
3秒前
whh123完成签到 ,获得积分10
4秒前
7秒前
9秒前
俭朴梦菡完成签到,获得积分10
9秒前
12秒前
怕孤单的听寒完成签到,获得积分10
15秒前
酷波er应助dd采纳,获得10
16秒前
难过大神完成签到,获得积分10
16秒前
17秒前
zyk发布了新的文献求助10
17秒前
zzh发布了新的文献求助10
19秒前
qiao应助一颗红葡萄采纳,获得10
20秒前
21秒前
24秒前
26秒前
steven发布了新的文献求助10
27秒前
dd发布了新的文献求助10
29秒前
29秒前
李浩发布了新的文献求助10
32秒前
sun发布了新的文献求助10
36秒前
yy发布了新的文献求助10
37秒前
neo关注了科研通微信公众号
38秒前
40秒前
圆圆发布了新的文献求助10
40秒前
消摇完成签到,获得积分10
43秒前
学霸宇大王完成签到 ,获得积分10
44秒前
46秒前
房山芙完成签到,获得积分10
48秒前
xxddw发布了新的文献求助10
50秒前
星辰大海应助sun采纳,获得10
50秒前
大方百招完成签到,获得积分10
51秒前
开朗书雪关注了科研通微信公众号
52秒前
英俊的铭应助来都来了采纳,获得10
54秒前
scq完成签到,获得积分10
56秒前
文静的飞飞完成签到 ,获得积分10
56秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808