亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning models accurately predict recurrent infection following revision total knee arthroplasty for periprosthetic joint infection

假体周围 医学 关节置换术 外科
作者
Christian Klemt,Samuel Laurencin,Akachimere Uzosike,Jillian C. Burns,Timothy Costales,Ingwon Yeo,Yasamin Habibi,Young‐Min Kwon
出处
期刊:Knee Surgery, Sports Traumatology, Arthroscopy [Springer Nature]
卷期号:30 (8): 2582-2590 被引量:50
标识
DOI:10.1007/s00167-021-06794-3
摘要

Abstract Purpose This study aimed to develop and validate machine‐learning models for the prediction of recurrent infection in patients following revision total knee arthroplasty for periprosthetic joint infection. Methods A total of 618 consecutive patients underwent revision total knee arthroplasty for periprosthetic joint infection. The patient cohort included 165 patients with confirmed recurrent periprosthetic joint infection (PJI). Potential risk factors including patient demographics and surgical characteristics served as input to three machine‐learning models which were developed to predict recurrent periprosthetic joint. The machine‐learning models were assessed by discrimination, calibration and decision curve analysis. Results The factors most significantly associated with recurrent PJI in patients following revision total knee arthroplasty for PJI included irrigation and debridement with/without modular component exchange ( p < 0.001), > 4 prior open surgeries ( p < 0.001), metastatic disease ( p < 0.001), drug abuse ( p < 0.001), HIV/AIDS ( p < 0.01), presence of Enterococcus species ( p < 0.01) and obesity ( p < 0.01). The machine‐learning models all achieved excellent performance across discrimination (AUC range 0.81–0.84). Conclusion This study developed three machine‐learning models for the prediction of recurrent infections in patients following revision total knee arthroplasty for periprosthetic joint infection. The strongest predictors were previous irrigation and debridement with or without modular component exchange and prior open surgeries. The study findings show excellent model performance, highlighting the potential of these computational tools in quantifying increased risks of recurrent PJI to optimize patient outcomes. Level of evidence IV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
耕云钓月发布了新的文献求助10
7秒前
Ico发布了新的文献求助10
12秒前
14秒前
发发发布了新的文献求助10
20秒前
zlzlzte完成签到 ,获得积分10
20秒前
彭于晏应助耕云钓月采纳,获得10
21秒前
24秒前
LJL完成签到 ,获得积分10
25秒前
xzhang55完成签到,获得积分10
26秒前
Sneijder10发布了新的文献求助10
28秒前
真实的咖啡豆完成签到 ,获得积分10
33秒前
Criminology34应助科研通管家采纳,获得10
36秒前
36秒前
Criminology34应助科研通管家采纳,获得10
37秒前
37秒前
Criminology34应助科研通管家采纳,获得30
37秒前
Criminology34应助科研通管家采纳,获得20
37秒前
37秒前
Mufreh应助科研通管家采纳,获得20
37秒前
科研通AI6.1应助9202211125采纳,获得30
45秒前
科研通AI6.1应助Sneijder10采纳,获得10
47秒前
48秒前
ylh发布了新的文献求助10
52秒前
Ghiocel完成签到,获得积分10
52秒前
55秒前
耕云钓月发布了新的文献求助10
55秒前
58秒前
9202211125发布了新的文献求助10
58秒前
NINGMUG关注了科研通微信公众号
59秒前
1分钟前
remember发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
CodeCraft应助remember采纳,获得10
1分钟前
江夏清完成签到,获得积分10
1分钟前
糖配坤完成签到 ,获得积分10
1分钟前
Grace完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助SSY采纳,获得10
1分钟前
Lusteri完成签到 ,获得积分10
1分钟前
科目三应助追寻友桃采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772479
求助须知:如何正确求助?哪些是违规求助? 5598976
关于积分的说明 15429712
捐赠科研通 4905414
什么是DOI,文献DOI怎么找? 2639398
邀请新用户注册赠送积分活动 1587319
关于科研通互助平台的介绍 1542182