PEG‐Induced Controllable Thin−Thickness Gradient and Water Retention: A Simple Way to Programme Deformation of Hydrogel Actuators

变形 材料科学 执行机构 PEG比率 变形(气象学) 自愈水凝胶 复合材料 形状变化 纳米技术 计算机科学 高分子化学 人工智能 生物物理学 财务 经济 生物
作者
Yang Yang,Ting Wang,Fei Tian,Xionglei Wang,Hu Yan,Xuehuan Xia,Shimei Xu
出处
期刊:Macromolecular Rapid Communications [Wiley]
卷期号:42 (14) 被引量:8
标识
DOI:10.1002/marc.202000749
摘要

Abstract Building the differential growth through the thickness is a promising and challenging approach to design the morphing structures of hydrogel actuators. Besides retaining the size of the hydrogel actuators under environmental stimuli still remains a big challenge. Herein, a facile and universal approach is developed to address both issues by introducing PEG during the polymerization of N‐isopropylacrylamide (NIPAm) via one step method using asymmetric mold. Both composition gradient and pore gradient are obtained in micro level along the thickness direction of the final hydrogel, while thin‐thickness gradient in macro level. The thickness gradient and water retention can be controllably adjusted by changing PEG concentration. The introduction of PEG effectively improves both responsive and non‐shrunken performance by the interaction with PNIPAm. The resultant anisotropic PNIPAm/PEG hydrogel respond quickly and reach maximum deformation (360°) within 10 s at low temperature (40 °C). The various 3D shape and biomimetic movement can be programmed by simply controlling the PEG concentration and mold shape. This strategy can provide new insights into the design intelligent soft materials with 3D morphing for bioinspired and biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hlx年少关注了科研通微信公众号
2秒前
4秒前
白文博完成签到 ,获得积分10
4秒前
乐生发布了新的文献求助10
5秒前
perovskite发布了新的文献求助10
5秒前
JINCHANG完成签到,获得积分10
6秒前
范欣雨完成签到,获得积分10
6秒前
7秒前
端庄凌文发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
酷波er应助queen814采纳,获得10
10秒前
12秒前
power驳回了冰魂应助
13秒前
田様应助cherish采纳,获得10
13秒前
搜集达人应助认真的映安采纳,获得10
14秒前
xjp发布了新的文献求助10
14秒前
田柾国发布了新的文献求助10
15秒前
15秒前
科研通AI5应助hihi采纳,获得10
15秒前
眠眠羊发布了新的文献求助10
16秒前
17秒前
ZhouYW应助breath采纳,获得10
18秒前
18秒前
玖梦恨别离发布了新的文献求助100
19秒前
LALALA卫卫J完成签到,获得积分10
20秒前
Jasper应助咕咕采纳,获得10
20秒前
22秒前
zz发布了新的文献求助10
22秒前
豪哥发布了新的文献求助10
22秒前
可爱紫文完成签到 ,获得积分10
23秒前
23秒前
浅色墨水发布了新的文献求助10
24秒前
科研通AI5应助王睿采纳,获得10
25秒前
26秒前
研友_nEoBP8完成签到,获得积分20
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635