Convolutional Neural Network of Multiparametric MRI Accurately Detects Axillary Lymph Node Metastasis in Breast Cancer Patients With Pre Neoadjuvant Chemotherapy

医学 乳腺癌 接收机工作特性 放射科 转移 乳房磁振造影 内科学 淋巴结 核医学 新辅助治疗 癌症 磁共振成像 乳腺摄影术
作者
Thomas Ren,Stephanie K. Lin,Pauline Huang,Timothy Q. Duong
出处
期刊:Clinical Breast Cancer [Elsevier BV]
卷期号:22 (2): 170-177 被引量:31
标识
DOI:10.1016/j.clbc.2021.07.002
摘要

Abstract

Background

Accurate assessment of the axillary lymph nodes (aLNs) in breast cancer patients is essential for prognosis and treatment planning. Current radiological staging of nodal metastasis has poor accuracy. This study aimed to investigate the machine learning convolutional neural networks (CNNs) on multiparametric MRI to detect nodal metastasis with 18FDG-PET as ground truths.

Materials and Methods

Data were obtained via a retrospective search. Inclusion criteria were patients with bilateral breast MRI and 18FDG-PETand/or CT scans obtained before neoadjuvant chemotherapy. In total, 238 aLNs were obtained from 56 breast cancer patients with 18FDG-PET and/or CT and breast MRI data. Radiologists scored each node based on all MRI as diseased and non–diseased nodes. Five models were built using T1-W MRI, T2-W MRI, DCE MRI, T1-W + T2-W MRI, and DCE + T2-W MRI model. Performance was evaluated using receiver operating curve (ROC) analysis, including area under the curve (AUC).

Results

All CNN models yielded similar performance with an accuracy ranging from 86.08% to 88.50% and AUC ranging from 0.804 to 0.882. The CNN model using T1-W MRI performed better than that using T2-W MRI in detecting nodal metastasis. CNN model using combined T1- and T2-W MRI performed the best compared to all other models (accuracy = 88.50%, AUC = 0.882), but similar in AUC to the DCE + T2-W MRI model (accuracy = 88.02%, AUC = 0.880). All CNN models performed better than radiologists in detecting nodal metastasis (accuracy = 65.8%).

Conclusion

xxxxxx
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
独特的兰发布了新的文献求助10
1秒前
个木发布了新的文献求助10
3秒前
3秒前
勤劳的忆寒完成签到,获得积分0
4秒前
Ava应助开放冰旋采纳,获得10
5秒前
Hhhh发布了新的文献求助10
6秒前
搜集达人应助个木采纳,获得10
7秒前
添望发布了新的文献求助10
7秒前
洲洲完成签到 ,获得积分10
8秒前
阿文完成签到,获得积分10
8秒前
斯文败类应助nana采纳,获得10
9秒前
9秒前
qiannnn完成签到,获得积分10
9秒前
科研通AI5应助心神依然采纳,获得10
9秒前
独特的兰完成签到,获得积分20
10秒前
SYLH应助神海采纳,获得10
13秒前
13秒前
qqqq发布了新的文献求助10
14秒前
桐桐应助DAMAOMI采纳,获得30
16秒前
fox2shj完成签到,获得积分10
17秒前
爆米花应助tcheng采纳,获得10
18秒前
dddddd发布了新的文献求助10
19秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
七慕凉应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
地表飞猪应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI2S应助七年采纳,获得10
23秒前
24秒前
慕青应助hyl采纳,获得10
28秒前
坚定汝燕完成签到 ,获得积分10
28秒前
心神依然发布了新的文献求助10
29秒前
稳重的招牌完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798216
求助须知:如何正确求助?哪些是违规求助? 3343654
关于积分的说明 10317211
捐赠科研通 3060416
什么是DOI,文献DOI怎么找? 1679497
邀请新用户注册赠送积分活动 806655
科研通“疑难数据库(出版商)”最低求助积分说明 763282