Multi-scale and modality dropout learning for intervertebral disc localization and segmentation

模态(人机交互) 计算机科学 分割 人工智能 辍学(神经网络) 计算机视觉 图像分割 深度学习 磁共振成像 模式识别(心理学) 比例(比率) 机器学习 医学 放射科 量子力学 物理
作者
Xiaomeng Li,Qi Dou,Hao Chen,Chi-Wing Fu,Pheng-Ann Heng
出处
期刊:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 卷期号:: 85-
链接
摘要

Automatic localization and segmentation of intervertebral discs (IVDs) from volumetric magnetic resonance (MR) images is important for spine disease diagnosis. It dramatically alleviates the workload of radiologists given that the traditional manual annotation is time-consuming and error-prone with limited reproducibility. Compared with single modality data, multi-modality MR images are able to provide complementary information. However, how to effectively integrate them to generate more accurate segmentation results still remains open for studies. In this paper, we introduce a multi-scale and modality dropout learning framework to segment IVDs from four-modality MR images. Specifically, we design a 3D fully convolutional network which takes multiple scales of images as input and merges these pathways at higher layers to jointly integrate multi-scale information. Furthermore, in order to harness the complementary information from different modalities, we propose a modality dropout strategy to alleviate the co-adaption issue during the training. We evaluated our method on the MICCAI 2016 Challenge on Automatic Intervertebral Disc Localization and Segmentation from 3D Multi-modality MR Images. Our method achieved the best overall performance with the mean segmentation Dice as 91.2% and localization error as 0.62 mm, which demonstrated the superiority of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LeeSunE发布了新的文献求助10
刚刚
1秒前
2秒前
事在人为完成签到,获得积分10
3秒前
3秒前
4秒前
honphyjiang发布了新的文献求助10
4秒前
爱科研发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
Ma完成签到,获得积分10
10秒前
小池发布了新的文献求助10
10秒前
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得80
11秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
12秒前
Akim应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
12秒前
科目三应助科研通管家采纳,获得50
12秒前
研狗完成签到,获得积分10
13秒前
李健的小迷弟应助gcy采纳,获得10
13秒前
14秒前
科研通AI5应助zzy采纳,获得10
15秒前
0000完成签到,获得积分10
15秒前
15秒前
16秒前
玖玖发布了新的文献求助10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247981
求助须知:如何正确求助?哪些是违规求助? 3781089
关于积分的说明 11871237
捐赠科研通 3434022
什么是DOI,文献DOI怎么找? 1884739
邀请新用户注册赠送积分活动 936340
科研通“疑难数据库(出版商)”最低求助积分说明 842216