X-Net: Multi-branch UNet-like network for liver and tumor segmentation from 3D abdominal CT scans

分割 计算机科学 棱锥(几何) 人工智能 模式识别(心理学) 特征(语言学) 肝癌 像素 肝肿瘤 卷积(计算机科学) 深度学习 放射科 医学 癌症 数学 人工神经网络 几何学 内科学 哲学 语言学 肝细胞癌
作者
Jianning Chi,Xiaoying Han,Chengdong Wu,Huan Wang,Peng Ji
出处
期刊:Neurocomputing [Elsevier]
卷期号:459: 81-96 被引量:61
标识
DOI:10.1016/j.neucom.2021.06.021
摘要

The diagnosis of liver cancer is one of the most attractive fields in clinical practice for its high mortality. Accurate segmentation of liver and tumor has been publicly accepted to be an effective method to assist doctors in determining the disease condition and planning the subsequent treatments. Recently, deep learning based methods have been widely used in tumor segmentation and provided good performance. However, current methods cannot fully reflect the differences between tumor, inside-liver tissues and outside-liver organs simultaneously, while the extraction of features reflecting axial changes of liver and tumor is always discounted by the heavy computational burden, resulting in limited learning effects and efficiencies. To solve these problems, in this paper, we propose a novel framework to segment liver and tumors in abdominal CT volumes, which consists of two parts: 1) we propose a multi-branch network where an up-sampling branch for liver region recognition and a pyramid-like convolution structure for inner-liver feature extraction are integrated into the back-bone Dense UNet structure for better extracting intra-slice features of liver and tumors; 2) we simplify the traditional 3D UNet by using the convolutional kernels with the fixed size 3 × 3 in x-y plane and apply it as a 3D counterpart for aggregating contextual information along the z-axis from the stacked, filtered CT slices, with the advantages of inhibiting the influence from neighboring pixels and alleviating the computational burden greatly. The above two parts are formulated as a unified end-to-end network so that the intra-slice feature representation and the inter-slice information aggregation can be learned and optimized jointly. Furthermore, we novely define a loss function combining a modified dice loss and a contour-detection based loss, so that the region features and contour features of the predicted segmentation of liver and tumors are jointly considered for network training and parameters optimization. Experimental results on the MICCAI 2017 Liver Tumor Segmentation Challenge dataset and 3DIRCADb dataset have demonstrated that the proposed method can provide superior performance to the state-of-the-art methods with respect to the certain benchmarks for liver and tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Marco_hxkq发布了新的文献求助10
刚刚
心斋完成签到,获得积分10
刚刚
刚刚
111关注了科研通微信公众号
刚刚
1秒前
1秒前
小羊发布了新的文献求助10
2秒前
简单发布了新的文献求助10
2秒前
chentao发布了新的文献求助10
2秒前
benchow完成签到,获得积分10
3秒前
77发布了新的文献求助10
3秒前
美好的邴完成签到,获得积分10
3秒前
Vincent完成签到,获得积分10
4秒前
水下月发布了新的文献求助10
4秒前
5秒前
6秒前
月白发布了新的文献求助10
6秒前
华仔应助可靠冰棍采纳,获得10
7秒前
qsy关闭了qsy文献求助
7秒前
Vincent发布了新的文献求助10
8秒前
酷波er应助猴子魏采纳,获得10
9秒前
夏雨发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
13秒前
耶咦发布了新的文献求助20
13秒前
lihaha完成签到,获得积分10
14秒前
科研通AI6应助青雉采纳,获得10
15秒前
15秒前
光头强发布了新的文献求助10
16秒前
完美世界应助guidao3采纳,获得10
16秒前
fffff发布了新的文献求助10
16秒前
16秒前
18秒前
19秒前
XZY发布了新的文献求助10
20秒前
阎雨雪完成签到,获得积分10
20秒前
cherish3232完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535968
求助须知:如何正确求助?哪些是违规求助? 4623760
关于积分的说明 14588969
捐赠科研通 4564340
什么是DOI,文献DOI怎么找? 2501618
邀请新用户注册赠送积分活动 1480473
关于科研通互助平台的介绍 1451779