Deep Siamese Networks Based Change Detection with Remote Sensing Images

变更检测 计算机科学 分割 人工智能 钥匙(锁) 深度学习 语义学(计算机科学) 任务(项目管理) 图像分割 模式识别(心理学) 二元分类 图像(数学) 支持向量机 经济 管理 程序设计语言 计算机安全
作者
Le Yang,Yiming Chen,Shiji Song,Fan Li,Gao Huang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (17): 3394-3394 被引量:44
标识
DOI:10.3390/rs13173394
摘要

Although considerable success has been achieved in change detection on optical remote sensing images, accurate detection of specific changes is still challenging. Due to the diversity and complexity of the ground surface changes and the increasing demand for detecting changes that require high-level semantics, we have to resort to deep learning techniques to extract the intrinsic representations of changed areas. However, one key problem for developing deep learning metho for detecting specific change areas is the limitation of annotated data. In this paper, we collect a change detection dataset with 862 labeled image pairs, where the urban construction-related changes are labeled. Further, we propose a supervised change detection method based on a deep siamese semantic segmentation network to handle the proposed data effectively. The novelty of the method is that the proposed siamese network treats the change detection problem as a binary semantic segmentation task and learns to extract features from the image pairs directly. The siamese architecture as well as the elaborately designed semantic segmentation networks significantly improve the performance on change detection tasks. Experimental results demonstrate the promising performance of the proposed network compared to existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴仇血完成签到,获得积分10
3秒前
4秒前
养花低手完成签到 ,获得积分10
5秒前
jennica发布了新的文献求助10
5秒前
kyle完成签到 ,获得积分10
5秒前
Yogita完成签到,获得积分10
5秒前
7秒前
7秒前
鲍复天完成签到,获得积分10
7秒前
kls完成签到,获得积分10
8秒前
东东呀完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
云轩完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
科研通AI5应助凉水采纳,获得30
10秒前
10秒前
任无施完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
脑洞疼应助从容谷菱采纳,获得10
12秒前
王水苗发布了新的文献求助10
13秒前
13秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801165
求助须知:如何正确求助?哪些是违规求助? 3346853
关于积分的说明 10330624
捐赠科研通 3063166
什么是DOI,文献DOI怎么找? 1681445
邀请新用户注册赠送积分活动 807567
科研通“疑难数据库(出版商)”最低求助积分说明 763728