异质结
光催化
石墨氮化碳
材料科学
半导体
纳米技术
氮化碳
载流子
光电子学
可见光谱
吸附
化学工程
化学
催化作用
物理化学
工程类
生物化学
作者
Bicheng Zhu,Bei Cheng,Jiajie Fan,Wingkei Ho,Jiaguo Yu
标识
DOI:10.1002/sstr.202100086
摘要
Employing semiconductor photocatalysis to transform solar energy into chemical energy provides a practicable strategy for the alleviation of energy and environmental crisis. Graphitic carbon nitride (g‐C 3 N 4 ) is a popular 2D photocatalyst with numerous advantages, such as visible light response, low cost, and high stability. However, single g‐C 3 N 4 photocatalyst displays poor performance due to fast recombination of photogenerated electrons and holes. To improve this limitation, many research works have focused on the construction of g‐C 3 N 4 ‐based 2D/2D heterojunction photocatalysts by hybridizing g‐C 3 N 4 with other 2D materials. The intimate face‐to‐face contact in 2D/2D heterojunction offers large contact area and plentiful channels for the migration and separation of photogenerated charge carriers. Furthermore, 2D/2D heterojunction inherits the strengths of 2D structure, including high specific surface area, abundant adsorption sites and active sites. Herein, the preparation, mechanism, and application of g‐C 3 N 4 ‐based 2D/2D heterojunction photocatalysts are reviewed. Three common preparation methods are summarized, including solid phase reaction, in situ growth, and electrostatic self‐assembly. Various photocatalytic mechanisms are discussed, including traditional type‐II, Z‐scheme and S‐scheme mechanisms. A series of applications in energy and environment fields are illustrated. Finally, future directions for the development of g‐C 3 N 4 ‐based 2D/2D heterojunction photocatalysts are proposed.
科研通智能强力驱动
Strongly Powered by AbleSci AI