粘弹性
人工神经网络
背景(考古学)
计算机科学
自动微分
人工智能
流离失所(心理学)
参数统计
反问题
水准点(测量)
本构方程
数学优化
应用数学
算法
计算
数学
有限元法
工程类
数学分析
物理
心理学
古生物学
统计
大地测量学
结构工程
生物
心理治疗师
地理
热力学
作者
Kailai Xu,Alexandre M. Tartakovsky,Jeffrey Burghardt,Eric Darve
标识
DOI:10.1016/j.cma.2021.114124
摘要
Abstract We propose a novel approach to model viscoelasticity materials, where rate-dependent and non-linear constitutive relationships are approximated with deep neural networks . We assume that inputs and outputs of the neural networks are not directly observable, and therefore common training techniques with input–output pairs for the neural networks are inapplicable. To that end, we develop a novel computational approach to both calibrate parametric and learn neural-network-based constitutive relations of viscoelasticity materials from indirect displacement data in the context of multiple-physics systems. We show that limited displacement data holds sufficient information to quantify the viscoelasticity behavior. We formulate the inverse computation – modeling viscoelasticity properties from observed displacement data – as a PDE-constrained optimization problem and minimize the error functional using a gradient-based optimization method. The gradients are computed by a combination of automatic differentiation and implicit function differentiation rules. The effectiveness of our method is demonstrated through numerous benchmark problems in geomechanics and porous media transport.
科研通智能强力驱动
Strongly Powered by AbleSci AI