物理
二极管
硅
兴奋剂
激光器
光电子学
材料科学
光学
作者
Christopher R. Fitch,Aidas Baltušis,Igor P. Marko,Daehwan Jung,Justin Norman,John E. Bowers,Stephen J. Sweeney
标识
DOI:10.1109/jstqe.2021.3101293
摘要
On-chip lasers are a key component for the realization of silicon photonics. The performance of silicon-based quantum dot (QD) devices is approaching equivalent QDs on native substrates. To drive forward design optimization we investigated the temperature and pressure dependence of intrinsic and modulation p-doped 1.3 μm InAs dot-in-well (DWELL) laser diodes on on-axis silicon substrates for comparison with devices on GaAs substrates. The silicon-based devices demonstrated low room temperature (RT) threshold current densities (J th ) of 192 Acm -2 (538 Acm -2 ) intrinsic (p-doped). Intrinsic devices exhibited temperature stable operation from 170-200 K. Above this, J th increased more rapidly due to increased non-radiative recombination. P-doping increased the temperature at which J th (T) started to increase to 300 K with a temperature insensitive region close to RT, but with a higher J th . A strong correlation was found between the temperature dependence of gain spectrum broadening and the radiative component of threshold J rad (T). At low temperature this is consistent with strong inhomogeneous broadening of the carrier distribution, which is more pronounced in the p-doped devices. At higher temperatures J th increases due to homogeneous thermal broadening coupled with non-radiative recombination. Hydrostatic pressure investigations indicate that while defect-related recombination dominates, radiative and Auger recombination also contribute to J th .
科研通智能强力驱动
Strongly Powered by AbleSci AI