Predicting Future Importance of Product Features Based on Online Customer Reviews

指数平滑 数据挖掘 计算机科学 模糊逻辑 产品(数学) 情绪分析 机器学习 时间序列 推论 人工智能 数学 几何学 计算机视觉
作者
Huimin Jiang,C. K. Kwong,Kai Leung Yung
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:139 (11) 被引量:27
标识
DOI:10.1115/1.4037348
摘要

Previous studies conducted customer surveys based on questionnaires and interviews, and the survey data were then utilized to analyze product features. In recent years, online customer reviews on products became extremely popular, which contain rich information on customer opinions and expectations. However, previous studies failed to properly address the determination of the importance of product features and prediction of their future importance based on online reviews. Accordingly, a methodology for predicting future importance weights of product features based on online customer reviews is proposed in this paper which mainly involves opinion mining, a fuzzy inference method, and a fuzzy time series method. Opinion mining is adopted to analyze the online reviews and extract product features. A fuzzy inference method is used to determine the importance weights of product features using both frequencies and sentiment scores obtained from opinion mining. A fuzzy time series method is adopted to predict the future importance of product features. A case study on electric irons was conducted to illustrate the proposed methodology. To evaluate the effectiveness of the fuzzy time series method in predicting the future importance, the results obtained by the fuzzy time series method are compared with those obtained by the three common forecasting methods. The results of the comparison show that the prediction results based on fuzzy time series method are better than those based on exponential smoothing, simple moving average, and fuzzy moving average methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助健壮的冰夏采纳,获得10
2秒前
所所应助学习学习学习采纳,获得10
4秒前
郭宇发布了新的文献求助10
7秒前
大模型应助嘻嘻不哈哈采纳,获得10
7秒前
7秒前
8秒前
9秒前
殷勤的可兰完成签到 ,获得积分10
12秒前
13秒前
魏伯安发布了新的文献求助10
13秒前
14秒前
14秒前
研友_nEoBP8发布了新的文献求助30
15秒前
16秒前
Jackie完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
Will完成签到 ,获得积分10
18秒前
景代丝发布了新的文献求助10
19秒前
Chris完成签到,获得积分10
19秒前
19秒前
ZYQ发布了新的文献求助10
20秒前
wpk发布了新的文献求助10
20秒前
归尘发布了新的文献求助10
20秒前
JOJO完成签到,获得积分10
21秒前
竹海涟漪完成签到,获得积分10
22秒前
魏伯安完成签到,获得积分10
24秒前
研友_nEoBP8完成签到,获得积分10
24秒前
24秒前
科研通AI5应助芭娜55采纳,获得10
25秒前
25秒前
26秒前
simon完成签到,获得积分10
26秒前
今后应助高挑的宛海采纳,获得10
26秒前
NexusExplorer应助寒时采纳,获得10
26秒前
淡然尔蝶完成签到,获得积分10
26秒前
思源应助羊羊羊采纳,获得10
27秒前
还单身的惜文完成签到 ,获得积分10
28秒前
jinxli完成签到 ,获得积分10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354951
关于积分的说明 10373613
捐赠科研通 3071505
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811324
科研通“疑难数据库(出版商)”最低求助积分说明 766616