Wind Power Curve Modeling and Wind Power Forecasting With Inconsistent Data

风力发电 风电预测 异方差 风速 曲线拟合 功率(物理) 概率逻辑 统计 电力系统 气象学 计算机科学 数学 计量经济学 工程类 地理 物理 电气工程 量子力学
作者
Yun Wang,Qinghua Hu,Dipti Srinivasan,Zheng Wang
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 16-25 被引量:129
标识
DOI:10.1109/tste.2018.2820198
摘要

Wind power curve modeling is a challenging task due to the existence of inconsistent data, in which the recorded wind power is far away from the theoretical wind power at a given wind speed. In this case, confronted with these samples, the estimated errors of wind power will become large. Thus, the estimated errors will present two properties: heteroscedasticity and error distribution with a long tail. In this paper, according to the above-mentioned error characteristics, the heteroscedastic spline regression model (HSRM) and robust spline regression model (RSRM) are proposed to obtain more accurate power curves even in the presence of the inconsistent samples. The results of power curve modeling on the real-world data show the effectiveness of HSRM and RSRM in different seasons. As HSRM and RSRM are optimized by variational Bayesian, except the deterministic power curves, probabilistic power curves, which can be used to detect the inconsistent samples, can also be obtained. Additionally, with the data processed by replacing the wind power in the detected inconsistent samples with the wind power on the estimated power curve, the forecasting results show that more accurate wind power forecasts can be obtained using the above-mentioned data processing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉含莲发布了新的文献求助10
1秒前
1秒前
1秒前
木木SCI完成签到 ,获得积分10
1秒前
3秒前
充电宝应助大胆访蕊采纳,获得10
3秒前
Ava应助方方采纳,获得10
5秒前
安溢发布了新的文献求助10
5秒前
6秒前
6秒前
小蘑菇应助罗小学采纳,获得30
6秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得30
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
午见千山应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
Dawn发布了新的文献求助10
10秒前
10秒前
安晓慧完成签到 ,获得积分10
11秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325