Radiomics strategy for glioma grading using texture features from multiparametric MRI

胶质瘤 医学 无线电技术 支持向量机 分级(工程) 磁共振成像 直方图 人口 放射科 计算机科学 模式识别(心理学) 核医学 人工智能 环境卫生 土木工程 癌症研究 工程类 图像(数学)
作者
Qiang Tian,Lin‐Feng Yan,Xi Zhang,Xin Zhang,Yu‐Chuan Hu,Yu Han,Zhicheng Liu,Hai‐Yan Nan,Qian Sun,Ying‐Zhi Sun,Yang Yang,Ying Yu,Jin Zhang,Bo Hu,Gang Xiao,Ping Chen,Shuai Tian,Jie Xu,Wen Wang,Guangbin Cui
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:48 (6): 1518-1528 被引量:186
标识
DOI:10.1002/jmri.26010
摘要

Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays.To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps.Retrospective; radiomics.A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively.3.0T MRI/T1 -weighted images before and after contrast-enhanced, T2 -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images.After multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency.Student's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist.Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI.Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
三里墩头应助Phil采纳,获得10
3秒前
小二郎应助达达采纳,获得10
6秒前
所所应助彪壮的刺猬采纳,获得10
6秒前
ll完成签到,获得积分10
6秒前
ShiRz发布了新的文献求助10
8秒前
9秒前
李爱国应助Yi采纳,获得10
10秒前
123完成签到,获得积分10
11秒前
pluto应助怕孤单的雁荷采纳,获得10
11秒前
Phil完成签到,获得积分10
12秒前
starleo发布了新的文献求助10
14秒前
14秒前
15秒前
个性的南珍完成签到 ,获得积分10
17秒前
17秒前
18秒前
zhou发布了新的文献求助10
19秒前
Akim应助hudiefeifei306采纳,获得10
21秒前
丹丹发布了新的文献求助10
22秒前
23秒前
Peter发布了新的文献求助10
23秒前
田様应助科研通管家采纳,获得10
28秒前
29秒前
29秒前
MchemG应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得30
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
皮肤科应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得30
29秒前
情怀应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得10
30秒前
1619汤姆完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776819
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209450
捐赠科研通 3037558
什么是DOI,文献DOI怎么找? 1666761
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976