Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis

多发性硬化 脑脊液 预测值 医学 磁共振成像 内科学 免疫学 放射科
作者
Yoav Y. Broza,Lior Har‐Shai,Raneen Jeries,John C. Cancilla,Lea Glass‐Marmor,Izabella Lejbkowicz,José S. Torrecilla,Xuelin Yao,Xinliang Feng,Akimitsu Narita,Kläus Müllen,Ariel Miller,Hossam Haick
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:8 (11): 2402-2413 被引量:53
标识
DOI:10.1021/acschemneuro.7b00181
摘要

Multiple sclerosis (MS) is the most common chronic neurological disease affecting young adults. MS diagnosis is based on clinical characteristics and confirmed by examination of the cerebrospinal fluids (CSF) or by magnetic resonance imaging (MRI) of the brain or spinal cord or both. However, neither of the current diagnostic procedures are adequate as a routine tool to determine disease state. Thus, diagnostic biomarkers are needed. In the current study, a novel approach that could meet these expectations is presented. The approach is based on noninvasive analysis of volatile organic compounds (VOCs) in breath. Exhaled breath was collected from 204 participants, 146 MS and 58 healthy control individuals. Analysis was performed by gas-chromatography mass-spectrometry (GC-MS) and nanomaterial-based sensor array. Predictive models were derived from the sensors, using artificial neural networks (ANNs). GC-MS analysis revealed significant differences in VOC abundance between MS patients and controls. Sensor data analysis on training sets was able to discriminate in binary comparisons between MS patients and controls with accuracies up to 90%. Blinded sets showed 95% positive predictive value (PPV) between MS-remission and control, 100% sensitivity with 100% negative predictive value (NPV) between MS not-treated (NT) and control, and 86% NPV between relapse and control. Possible links between VOC biomarkers and the MS pathogenesis were established. Preliminary results suggest the applicability of a new nanotechnology-based method for MS diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到,获得积分10
2秒前
2秒前
大菠萝发布了新的文献求助10
2秒前
欣喜的妙竹完成签到,获得积分10
2秒前
baihehuakai发布了新的文献求助10
2秒前
liang发布了新的文献求助10
2秒前
yaya完成签到,获得积分10
3秒前
深情安青应助黑魔导采纳,获得10
3秒前
木子完成签到 ,获得积分10
3秒前
5秒前
平蓝发布了新的文献求助20
6秒前
cl完成签到 ,获得积分10
7秒前
7秒前
zjmm完成签到,获得积分10
8秒前
lyzhao完成签到,获得积分10
8秒前
顾矜应助任性的败采纳,获得10
8秒前
大菠萝完成签到,获得积分10
9秒前
maizencrna发布了新的文献求助10
10秒前
wuchang完成签到,获得积分10
11秒前
苗松完成签到,获得积分10
11秒前
12秒前
月亮啊完成签到 ,获得积分10
13秒前
13秒前
15秒前
Austin Wang发布了新的文献求助10
16秒前
小土豆完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
MH发布了新的文献求助200
18秒前
sherry完成签到 ,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
天之骄姿001完成签到,获得积分10
22秒前
gladuhere完成签到 ,获得积分10
25秒前
余文乐完成签到 ,获得积分10
25秒前
务实鞅完成签到 ,获得积分10
26秒前
aimynora完成签到 ,获得积分10
27秒前
现实的映菡完成签到 ,获得积分10
27秒前
oriiiiii发布了新的文献求助10
28秒前
baihehuakai完成签到,获得积分10
29秒前
大个应助清神安采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789889
求助须知:如何正确求助?哪些是违规求助? 5724423
关于积分的说明 15475951
捐赠科研通 4917673
什么是DOI,文献DOI怎么找? 2647185
邀请新用户注册赠送积分活动 1594789
关于科研通互助平台的介绍 1549241