Radiomics in paediatric neuro‐oncology: A multicentre study on MRI texture analysis

支持向量机 无线电技术 人工智能 成对比较 特征选择 模式识别(心理学) 纹理(宇宙学) 接收机工作特性 医学 机器学习 脑癌 计算机科学 随机森林 医学物理学 癌症 图像(数学) 内科学
作者
Ahmed E. Fetit,Jan Novák,Daniel Rodriguez Gutierrez,Dorothee P. Auer,Chris Clark,Richard G. Grundy,Andrew C. Peet,Theodoros N. Arvanitis
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:31 (1) 被引量:54
标识
DOI:10.1002/nbm.3781
摘要

Brain tumours are the most common solid cancers in children in the UK and are the most common cause of cancer deaths in this age group. Despite current advances in MRI, non‐invasive diagnosis of paediatric brain tumours has yet to find its way into routine clinical practice. Radiomics , the high‐throughput extraction and analysis of quantitative image features (e.g. texture), offers potential solutions for tumour characterization and decision support. In the search for diagnostic oncological markers, the primary aim of this work was to study the application of MRI texture analysis (TA) for the classification of paediatric brain tumours. A multicentre study was carried out, within a supervised classification framework, on clinical MR images, and a support vector machine (SVM) was trained with 3D textural attributes obtained from conventional MRI. To determine the cross‐centre transferability of TA, an assessment of how SVM performs on unseen datasets was carried out through rigorous pairwise testing. The study also investigated the nature of features that are most likely to train classifiers that can generalize well with the data. Finally, the issue of class imbalance, which arises due to some tumour types being more common than others, was explored. For each of the tests carried out through pairwise testing, the optimal area under the receiver operating characteristic curve ranged between 76% and 86%, suggesting that the model was able to capture transferable tumour information. Feature selection results suggest that similar aspects of tumour texture are enhanced by MR images obtained at different hospitals. Our results also suggest that the availability of equally represented classes has enabled SVM to better characterize the data points. The findings of the study presented here support the use of 3D TA on conventional MR images to aid diagnostic classification of paediatric brain tumours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘小明发布了新的文献求助10
1秒前
Owen应助古月采纳,获得10
4秒前
阿包完成签到 ,获得积分10
4秒前
科研通AI5应助晓王采纳,获得10
5秒前
6秒前
7秒前
CodeCraft应助米子采纳,获得10
7秒前
10秒前
jianhua发布了新的文献求助10
11秒前
李健应助古月采纳,获得10
13秒前
13秒前
青橘短衫完成签到,获得积分10
16秒前
squrreil完成签到,获得积分10
17秒前
19秒前
19秒前
19秒前
19秒前
21秒前
21秒前
JamesPei应助秋子采纳,获得10
21秒前
刀锋发布了新的文献求助10
22秒前
晓王完成签到,获得积分10
23秒前
23秒前
24秒前
wly1111发布了新的文献求助10
24秒前
25秒前
26秒前
zsj发布了新的文献求助10
27秒前
晓王发布了新的文献求助10
27秒前
OrthoLee完成签到,获得积分10
28秒前
米子发布了新的文献求助10
30秒前
30秒前
SWEETYXY完成签到,获得积分10
31秒前
32秒前
踏实的哑铃完成签到 ,获得积分10
32秒前
wly1111完成签到,获得积分10
34秒前
ding应助清新的音响采纳,获得10
34秒前
rye227应助轻松笙采纳,获得10
35秒前
EKo完成签到,获得积分10
35秒前
SWEETYXY发布了新的文献求助30
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339