已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tracing the geographical origin of burdock root based on fluorescent components using multi-way chemometrics techniques

化学计量学 偏最小二乘回归 线性判别分析 主成分分析 模式识别(心理学) 追踪 生物系统 化学 判别式 人工智能 数学 分析化学(期刊) 统计 计算机科学 色谱法 生物 操作系统
作者
Leqian Hu,Chunling Yin,Shuai Ma,Zhimin Liu
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:137: 456-463 被引量:15
标识
DOI:10.1016/j.microc.2017.12.012
摘要

Tracing the geographical origin of burdock root based on fluorescent components using multi-way chemometrics techniques were investigated in this work. Excitation emission spectra were obtained for 150 burdock root of different geographical origins by recording emission from 270 to 510 nm with excitation in the range of 250–500 nm. Multi-way principal components analysis (M-PCA), Multi-way partial least squares discriminant analysis (N-PLS-DA) and Parallel factor analysis coupling with partial least squares discriminant analysis (PARAFAC-PLS-DA) methods were used to decompose the excitation-emission matrices (EEM) datasets and classify the different burdock roots according to their geographical origins. M-PCA model showed the clustering tendency for the different geographical origin of burdock root samples. N-PLS-DA and PARAFAC-PLS-DA gave more detailed classification results. The accuracy of successful in prediction of the geographical origin of the 150 samples varied between 77.8% and 100% for N-PLS-DA model. For PARFAC-PLS-DA model, the accuracy of the 150 samples varied between 94.7% and 100%. Different figures of merit were used for comparing the classification ability of N-PLS-DA and PARAFAC-PLS-DA model. Comparing with the other two methods, the PARAFAC-PLS-DA classification model, constructed from PARAFAC model scores, got more accurate and reliable classification result. The result showed this method could be applied to trace the geographical origins of burdock root. Further, considering the relative concentration can be acquired by PARAFAC model, the interest of this model emerges from the fact that it maybe be promising to be used to distinguish the quality grade level of the burdock root samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myth发布了新的文献求助10
1秒前
张奎应助kate采纳,获得160
1秒前
尘尘完成签到,获得积分10
1秒前
科研通AI5应助wugkazh采纳,获得30
2秒前
科研助手6应助SCI66采纳,获得10
3秒前
脆脆鲨完成签到,获得积分10
4秒前
大卷完成签到 ,获得积分10
4秒前
冷静乐天完成签到 ,获得积分10
12秒前
13秒前
顾矜应助清爽胡萝卜采纳,获得10
14秒前
16秒前
18秒前
lixiaopan2024完成签到,获得积分20
20秒前
maomaoyu发布了新的文献求助20
20秒前
SciGPT应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
22秒前
襄阳发布了新的文献求助10
23秒前
23秒前
个性书翠发布了新的文献求助10
23秒前
风趣的从梦完成签到,获得积分10
24秒前
研友_VZG7GZ应助旅途之人采纳,获得10
25秒前
小慧完成签到,获得积分10
25秒前
利维坦发布了新的文献求助10
26秒前
29秒前
31秒前
持卿应助凶狠的苗条采纳,获得10
32秒前
黎泱完成签到 ,获得积分10
32秒前
kk子完成签到,获得积分10
33秒前
33秒前
34秒前
ftl完成签到 ,获得积分20
35秒前
张喆完成签到,获得积分10
35秒前
郑思雨完成签到,获得积分20
35秒前
无花果应助shuhaha采纳,获得10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845361
求助须知:如何正确求助?哪些是违规求助? 3387557
关于积分的说明 10549919
捐赠科研通 3108283
什么是DOI,文献DOI怎么找? 1712532
邀请新用户注册赠送积分活动 824429
科研通“疑难数据库(出版商)”最低求助积分说明 774794