TREATMENT SWITCHING: STATISTICAL AND DECISION-MAKING CHALLENGES AND APPROACHES

计算机科学 控制(管理) 管理科学 秩(图论) 运筹学 风险分析(工程) 医学 经济 人工智能 工程类 数学 组合数学
作者
Nicholas Latimer,Chris Henshall,Uwe Siebert,Helen Bell
出处
期刊:International Journal of Technology Assessment in Health Care [Cambridge University Press]
卷期号:32 (3): 160-166 被引量:27
标识
DOI:10.1017/s026646231600026x
摘要

Treatment switching refers to the situation in a randomized controlled trial where patients switch from their randomly assigned treatment onto an alternative. Often, switching is from the control group onto the experimental treatment. In this instance, a standard intention-to-treat analysis does not identify the true comparative effectiveness of the treatments under investigation. We aim to describe statistical methods for adjusting for treatment switching in a comprehensible way for nonstatisticians, and to summarize views on these methods expressed by stakeholders at the 2014 Adelaide International Workshop on Treatment Switching in Clinical Trials.We describe three statistical methods used to adjust for treatment switching: marginal structural models, two-stage adjustment, and rank preserving structural failure time models. We draw upon discussion heard at the Adelaide International Workshop to explore the views of stakeholders on the acceptability of these methods.Stakeholders noted that adjustment methods are based on assumptions, the validity of which may often be questionable. There was disagreement on the acceptability of adjustment methods, but consensus that when these are used, they should be justified rigorously. The utility of adjustment methods depends upon the decision being made and the processes used by the decision-maker.Treatment switching makes estimating the true comparative effect of a new treatment challenging. However, many decision-makers have reservations with adjustment methods. These, and how they affect the utility of adjustment methods, require further exploration. Further technical work is required to develop adjustment methods to meet real world needs, to enhance their acceptability to decision-makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leoskrrr完成签到,获得积分10
3秒前
一一完成签到 ,获得积分10
6秒前
风信子deon01完成签到,获得积分10
7秒前
米博士完成签到,获得积分10
8秒前
xiao礼完成签到,获得积分10
8秒前
飞舞的青鱼完成签到,获得积分10
8秒前
Lyw完成签到 ,获得积分10
10秒前
爱的魔力转圈圈完成签到,获得积分10
10秒前
鲤鱼越越完成签到 ,获得积分10
11秒前
huhu完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
15秒前
JUAN完成签到,获得积分10
18秒前
19秒前
饱满烙完成签到 ,获得积分10
21秒前
慕青应助大海123采纳,获得10
22秒前
22秒前
欧阳铭发布了新的文献求助10
23秒前
江上游完成签到 ,获得积分10
26秒前
26秒前
28秒前
29秒前
共享精神应助欧阳铭采纳,获得10
33秒前
研友_VZGVzn完成签到,获得积分10
36秒前
棍棍来也完成签到,获得积分10
37秒前
zeannezg完成签到 ,获得积分10
38秒前
铜泰妍完成签到 ,获得积分10
39秒前
FashionBoy应助吴学仕采纳,获得10
40秒前
量子星尘发布了新的文献求助10
42秒前
南浔完成签到 ,获得积分10
45秒前
wuda完成签到,获得积分10
46秒前
49秒前
49秒前
关中人完成签到,获得积分10
53秒前
吴学仕发布了新的文献求助10
54秒前
2012xn完成签到 ,获得积分10
54秒前
快乐学习每一天完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
55秒前
57秒前
qiaoxi完成签到,获得积分10
59秒前
AZE完成签到,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4249906
求助须知:如何正确求助?哪些是违规求助? 3783044
关于积分的说明 11873914
捐赠科研通 3434868
什么是DOI,文献DOI怎么找? 1885102
邀请新用户注册赠送积分活动 936768
科研通“疑难数据库(出版商)”最低求助积分说明 842696