已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An EEMD-ICA Approach to Enhancing Artifact Rejection for Noisy Multivariate Neural Data

模式识别(心理学) 工件(错误) 希尔伯特-黄变换 计算机科学 人工智能 独立成分分析 预处理器 小波 多元统计 人工神经网络 语音识别 均方误差 数学 机器学习 计算机视觉 统计 滤波器(信号处理)
作者
Ke Zeng,Dan Chen,Gaoxiang Ouyang,Lizhe Wang,Xianzeng Liu,Xiaoli Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 630-638 被引量:71
标识
DOI:10.1109/tnsre.2015.2496334
摘要

As neural data are generally noisy, artifact rejection is crucial for data preprocessing. It has long been a grand research challenge for an approach which is able: 1) to remove the artifacts and 2) to avoid loss or disruption of the structural information at the same time, thus the risk of introducing bias to data interpretation may be minimized. In this study, an approach (namely EEMD-ICA) was proposed to first decompose multivariate neural data that are possibly noisy into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD). Independent component analysis (ICA) was then applied to the IMFs to separate the artifactual components. The approach was tested against the classical ICA and the automatic wavelet ICA (AWICA) methods, which were dominant methods for artifact rejection. In order to evaluate the effectiveness of the proposed approach in handling neural data possibly with intensive noises, experiments on artifact removal were performed using semi-simulated data mixed with a variety of noises. Experimental results indicate that the proposed approach continuously outperforms the counterparts in terms of both normalized mean square error (NMSE) and Structure SIMilarity (SSIM). The superiority becomes even greater with the decrease of SNR in all cases, e.g., SSIM of the EEMD-ICA can almost double that of AWICA and triple that of ICA. To further examine the potentials of the approach in sophisticated applications, the approach together with the counterparts were used to preprocess a real-life epileptic EEG with absence seizure. Experiments were carried out with the focus on characterizing the dynamics of the data after artifact rejection, i.e., distinguishing seizure-free, pre-seizure and seizure states. Using multi-scale permutation entropy to extract feature and linear discriminant analysis for classification, the EEMD-ICA performed the best for classifying the states (87.4%, about 4.1% and 8.7% higher than that of AWICA and ICA respectively), which was closest to the results of the manually selected dataset (89.7%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬应助科研通管家采纳,获得10
刚刚
轻松元绿完成签到 ,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
zhuangzhuang发布了新的文献求助10
2秒前
2秒前
七七完成签到,获得积分10
2秒前
Jenlisa完成签到 ,获得积分10
4秒前
123完成签到 ,获得积分10
5秒前
李志全完成签到 ,获得积分10
5秒前
全全圆圆圈圈完成签到,获得积分10
5秒前
江上游完成签到 ,获得积分10
6秒前
布同完成签到,获得积分10
7秒前
碧蓝的大有完成签到,获得积分10
7秒前
tyq完成签到,获得积分10
7秒前
8秒前
8秒前
英俊的铭应助王小果采纳,获得10
9秒前
zhuangzhuang完成签到,获得积分10
11秒前
小情绪完成签到 ,获得积分10
11秒前
cxx完成签到 ,获得积分10
11秒前
zhaco关注了科研通微信公众号
11秒前
念初完成签到 ,获得积分10
12秒前
wangyang完成签到 ,获得积分10
12秒前
MissingParadise完成签到 ,获得积分10
12秒前
咸烧白胀多了完成签到,获得积分10
12秒前
zhang完成签到 ,获得积分10
12秒前
伏城完成签到 ,获得积分10
14秒前
MrLing发布了新的文献求助10
14秒前
狮子清明尊完成签到,获得积分10
14秒前
逍遥小书生完成签到 ,获得积分10
14秒前
16秒前
16秒前
Alex完成签到,获得积分0
16秒前
MchemG应助ceeray23采纳,获得30
16秒前
贰鸟应助狮子清明尊采纳,获得10
17秒前
17秒前
典雅若云关注了科研通微信公众号
20秒前
20秒前
salan完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4278979
求助须知:如何正确求助?哪些是违规求助? 3807452
关于积分的说明 11928530
捐赠科研通 3454645
什么是DOI,文献DOI怎么找? 1894459
邀请新用户注册赠送积分活动 944114
科研通“疑难数据库(出版商)”最低求助积分说明 847958