Consistency of breast density categories in serial screening mammograms: A comparison between automated and human assessment

医学 一致性(知识库) 乳房密度 医学物理学 乳腺摄影术 肿瘤科 乳腺癌 内科学 人工智能 癌症 计算机科学
作者
Katharina Holland,Jan van Zelst,Gerard J. den Heeten,Mechli Imhof-Tas,Ritse M. Mann,Carla H. van Gils,Nico Karssemeijer
出处
期刊:The Breast [Elsevier BV]
卷期号:29: 49-54 被引量:22
标识
DOI:10.1016/j.breast.2016.06.020
摘要

Reliable breast density measurement is needed to personalize screening by using density as a risk factor and offering supplemental screening to women with dense breasts. We investigated the categorization of pairs of subsequent screening mammograms into density classes by human readers and by an automated system. With software (VDG) and by four readers, including three specialized breast radiologists, 1000 mammograms belonging to 500 pairs of subsequent screening exams were categorized into either two or four density classes. We calculated percent agreement and the percentage of women that changed from dense to non-dense and vice versa. Inter-exam agreement (IEA) was calculated with kappa statistics. Results were computed for each reader individually and for the case that each mammogram was classified by one of the four readers by random assignment (group reading). Higher percent agreement was found with VDG (90.4%, CI 87.9-92.9%) than with readers (86.2-89.2%), while less plausible changes from non-dense to dense occur less often with VDG (2.8%, CI 1.4-4.2%) than with group reading (4.2%, CI 2.4-6.0%). We found an IEA of 0.68-0.77 for the readers using two classes and an IEA of 0.76-0.82 using four classes. IEA is significantly higher with VDG compared to group reading. The categorization of serial mammograms in density classes is more consistent with automated software than with a mixed group of human readers. When using breast density to personalize screening protocols, assessment with software may be preferred over assessment by radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
1秒前
WSDSG发布了新的文献求助10
1秒前
米团完成签到,获得积分10
1秒前
Liu发布了新的文献求助20
1秒前
777完成签到 ,获得积分10
1秒前
传奇3应助高宇采纳,获得10
2秒前
渔片枫舟叶应助辞忧采纳,获得10
2秒前
bearbiscuit发布了新的文献求助10
2秒前
声声慢发布了新的文献求助10
2秒前
无情的柏柳完成签到,获得积分10
3秒前
huk发布了新的文献求助10
3秒前
4秒前
wxy发布了新的文献求助10
4秒前
4秒前
xiangkun发布了新的文献求助10
5秒前
yyy完成签到,获得积分10
5秒前
三石发布了新的文献求助10
6秒前
6秒前
6秒前
CodeCraft应助DreamLly采纳,获得10
6秒前
shihuili发布了新的文献求助10
6秒前
小二郎应助天边的云采纳,获得10
6秒前
辞忧发布了新的文献求助10
7秒前
务实土豆完成签到 ,获得积分10
7秒前
7秒前
orixero应助极速小鱼采纳,获得10
7秒前
饱满雅寒发布了新的文献求助10
7秒前
酷波er应助LF采纳,获得30
8秒前
Vegccc完成签到,获得积分10
8秒前
8秒前
张子文发布了新的文献求助10
8秒前
今后应助JIANG采纳,获得10
9秒前
bearbiscuit完成签到,获得积分10
9秒前
xuanyu完成签到,获得积分10
9秒前
yuqiu发布了新的文献求助20
10秒前
huk完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384568
求助须知:如何正确求助?哪些是违规求助? 3877805
关于积分的说明 12079791
捐赠科研通 3521208
什么是DOI,文献DOI怎么找? 1932416
邀请新用户注册赠送积分活动 973680
科研通“疑难数据库(出版商)”最低求助积分说明 871863