计算机科学
鉴定(生物学)
全球定位系统
数据挖掘
交通拥挤
大数据
网络拥塞
实时计算
工程类
运输工程
计算机网络
电信
植物
生物
网络数据包
作者
Atousa Zarindast,Subhadipto Poddar,Anuj Sharma
标识
DOI:10.1061/jtepbs.0000654
摘要
Congestion detection is one of the key steps in reducing delays and associated costs in traffic management. With the increasing use of global positioning system (GPS)-based navigation, promising speed data are now available. This study used extensive historical probe data (year 2016) in Des Moines, Iowa. We used Bayesian change point detection to segment the speed signal and detect temporal congestion. The detected congestion events were then classified as recurrent congestion (RC) or nonrecurrent congestion (NRC). This paper thus presents a robust statistical, big-data-driven expert system and a big-data-mining methodology for identifying both recurrent and nonrecurrent congestion.
科研通智能强力驱动
Strongly Powered by AbleSci AI