Convolutional neural network-long short term memory optimization for accurate prediction of airflow in a ventilation system

气流 计算机科学 卷积神经网络 人工智能 通风(建筑) 人工神经网络 深度学习 特征(语言学) 机器学习 工程类 语言学 机械工程 哲学
作者
Prince Kumar,Ananda Shankar Hati
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116618-116618 被引量:4
标识
DOI:10.1016/j.eswa.2022.116618
摘要

Poor airflow ventilation systems fetch a progressively critical challenge for many working areas, which transmits many calamitous physical consequences on operatives’ health and quality of work. However, accurate monitoring and prediction of the ventilation systems airflow remain challenging due to the multiple properties and non-linear characteristics in time and space. Machine learning and deep neural network techniques have recently received significant consideration for their real-world applications in numerous areas. This affluence key feature is a deep neural network motivated by the data handling in biological brains. In this article, we applied one of the representative deep neural network techniques, i.e., 1D-CNN with LSTM, to predict the variation in the airflow of the ventilation system. These utilize CNN advantage, which effectively extracts the systems feature, whereas the LSTM can imitate the long-term sequential progression of input time-series data. It provides SHAP analysis that can be used to understand the output of the proposed model to forecast the airflow of the ventilation system. This method computes an approximation of the influence of individual features for predicting the non-linear element. Subsequently, five models, i.e., CNN, LSTM, 1D-CNN-LSTM, ANN, and LR, are used to predict the ventilation system’s airflow. The result shows that the proposed model 1D-CNN-LSTM accuracy and loss are 96.7 %, and 0.01348 provides the finest result compared to others. The aim of this research lies in the application of a complex model to interpret the airflow of the ventilation system. It is of great interest as it consents us to comprehend how a model behaves and enables us to take pre-emptive methods to improve working efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juaner完成签到,获得积分10
1秒前
CodeCraft应助Stone采纳,获得10
2秒前
3秒前
龘龘龘发布了新的文献求助10
5秒前
juaner发布了新的文献求助10
9秒前
红墨完成签到,获得积分10
10秒前
fff完成签到,获得积分10
11秒前
Sthool完成签到,获得积分20
12秒前
hetao完成签到,获得积分10
13秒前
英姑应助12138采纳,获得10
14秒前
Ava应助西沃恩采纳,获得10
16秒前
DONG完成签到,获得积分10
16秒前
高高盼海完成签到,获得积分10
17秒前
冰bing完成签到 ,获得积分10
17秒前
萌萌小粥完成签到 ,获得积分10
17秒前
18秒前
19秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
乐乐应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
小黄人应助科研通管家采纳,获得10
21秒前
小黄人应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
YDY发布了新的文献求助10
23秒前
大模型应助Mok采纳,获得10
23秒前
WY完成签到 ,获得积分10
23秒前
科目三应助RC_Wang采纳,获得10
24秒前
24秒前
桐桐应助小张吃不胖采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5838590
求助须知:如何正确求助?哪些是违规求助? 6133681
关于积分的说明 15601499
捐赠科研通 4956671
什么是DOI,文献DOI怎么找? 2671785
邀请新用户注册赠送积分活动 1616939
关于科研通互助平台的介绍 1571997