已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rapid Influence Maximization on Social Networks: The Positive Influence Dominating Set Problem

支配集 数学 多面体 组合数学 时间复杂性 最大化 图形 离散数学 集合(抽象数据类型) 斯坦纳树问题 节点(物理) 投影(关系代数) 指数函数 数学优化 算法 计算机科学 顶点(图论) 结构工程 工程类 数学分析 程序设计语言
作者
S. Raghavan,Rui Zhang
出处
期刊:Informs Journal on Computing 卷期号:34 (3): 1345-1365 被引量:4
标识
DOI:10.1287/ijoc.2021.1144
摘要

Motivated by applications arising on social networks, we study a generalization of the celebrated dominating set problem called the Positive Influence Dominating Set (PIDS). Given a graph G with a set V of nodes and a set E of edges, each node i in V has a weight b i , and a threshold requirement g i . We seek a minimum weight subset T of V, so that every node i not in T is adjacent to at least g i members of T. When g i is one for all nodes, we obtain the weighted dominating set problem. First, we propose a strong and compact extended formulation for the PIDS problem. We then project the extended formulation onto the space of the natural node-selection variables to obtain an equivalent formulation with an exponential number of valid inequalities. Restricting our attention to trees, we show that the extended formulation is the strongest possible formulation, and its projection (onto the space of the node variables) gives a complete description of the PIDS polytope on trees. We derive the necessary and sufficient facet-dening conditions for the valid inequalities in the projection and discuss their polynomial time separation. We embed this (exponential size) formulation in a branch-and-cut framework and conduct computational experiments using real-world graph instances, with up to approximately 2.5 million nodes and 8 million edges. On a test-bed of 100 real-world graph instances, our approach finds solutions that are on average 0.2% from optimality and solves 51 out of the 100 instances to optimality. Summary of Contribution: In influence maximization problems, a decision maker wants to target individuals strategically to cause a cascade at a minimum cost over a social network. These problems have attracted significant attention as their applications can be found in many different domains including epidemiology, healthcare, marketing, and politics. However, computationally solving large-scale influence maximization problems to near optimality remains a substantial challenge for the computing community, which thus represent significant opportunities for the development of operations-research based models, algorithms, and analysis in this interface. This paper studies the positive influence dominating set (PIDS) problem, an influence maximization problem on social networks that generalizes the celebrated dominating set problem. It focuses on developing exact methods for solving large instances to near optimality. In other words, the approach results in strong bounds, which then provide meaningful comparative benchmarks for heuristic approaches. The paper first shows that straightforward generalizations of well-known formulations for the dominating set problem do not yield strong (i.e., computationally viable) formulations for the PIDS problem. It then strengthens these formulations by proposing a compact extended formulation and derives its projection onto the space on the natural node-selection variables, resulting in two equivalent (stronger) formulations for the PIDS problem. The projected formulation on the natural node-variables contains a new class of valid inequalities that are shown to be facet-defining for the PIDS problem. These theoretical results are complemented by in-depth computational experiments using a branch-and-cut framework, on a testbed of 100 real-world graph instances, with up to approximately 2.5 million nodes and 8 million edges. They demonstrate the effectiveness of the proposed formulation in solving large scale problems finding solutions that are on average 0.2% from optimality and solving 51 of the 100 instances to optimality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情的迎海完成签到,获得积分10
1秒前
布蓝图完成签到 ,获得积分10
1秒前
luxiaoyu发布了新的文献求助10
3秒前
chutong12345完成签到 ,获得积分10
4秒前
Akim应助含蓄戾采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
rita_sun1969完成签到,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
Lexi完成签到 ,获得积分10
7秒前
Zhaowx完成签到,获得积分10
10秒前
10秒前
15秒前
15秒前
luxiaoyu完成签到,获得积分20
15秒前
wan12138发布了新的文献求助10
18秒前
lmy发布了新的文献求助10
20秒前
21秒前
23秒前
adsp56完成签到 ,获得积分10
26秒前
神勇映安发布了新的文献求助10
26秒前
含蓄戾发布了新的文献求助10
28秒前
hhhhhhhhhh完成签到 ,获得积分10
32秒前
34秒前
zl13332完成签到 ,获得积分10
38秒前
kexiya发布了新的文献求助20
41秒前
llk完成签到 ,获得积分10
44秒前
45秒前
甜甜甜完成签到 ,获得积分10
46秒前
teamguichu完成签到 ,获得积分10
47秒前
norberta发布了新的文献求助10
49秒前
科研小白发布了新的文献求助10
51秒前
ding应助卓越采纳,获得10
53秒前
原林皓发布了新的文献求助10
55秒前
Moonboss完成签到 ,获得积分10
56秒前
加油杨完成签到 ,获得积分10
56秒前
FashionBoy应助束滟泽采纳,获得20
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4566920
求助须知:如何正确求助?哪些是违规求助? 3990217
关于积分的说明 12354311
捐赠科研通 3661858
什么是DOI,文献DOI怎么找? 2017845
邀请新用户注册赠送积分活动 1052406
科研通“疑难数据库(出版商)”最低求助积分说明 939885