Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking

虚拟筛选 计算机科学 工作流程 化学数据库 对接(动物) 药物发现 生物信息学 数据库 生物 医学 护理部
作者
Francesco Gentile,Jean Charle Yaacoub,James Gleave,Michael Fernández,Anh‐Tien Ton,Fuqiang Ban,Abraham C. Stern,Artem Cherkasov
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:17 (3): 672-697 被引量:249
标识
DOI:10.1038/s41596-021-00659-2
摘要

With the recent explosion of chemical libraries beyond a billion molecules, more efficient virtual screening approaches are needed. The Deep Docking (DD) platform enables up to 100-fold acceleration of structure-based virtual screening by docking only a subset of a chemical library, iteratively synchronized with a ligand-based prediction of the remaining docking scores. This method results in hundreds- to thousands-fold virtual hit enrichment (without significant loss of potential drug candidates) and hence enables the screening of billion molecule–sized chemical libraries without using extraordinary computational resources. Herein, we present and discuss the generalized DD protocol that has been proven successful in various computer-aided drug discovery (CADD) campaigns and can be applied in conjunction with any conventional docking program. The protocol encompasses eight consecutive stages: molecular library preparation, receptor preparation, random sampling of a library, ligand preparation, molecular docking, model training, model inference and the residual docking. The standard DD workflow enables iterative application of stages 3–7 with continuous augmentation of the training set, and the number of such iterations can be adjusted by the user. A predefined recall value allows for control of the percentage of top-scoring molecules that are retained by DD and can be adjusted to control the library size reduction. The procedure takes 1–2 weeks (depending on the available resources) and can be completely automated on computing clusters managed by job schedulers. This open-source protocol, at https://github.com/jamesgleave/DD_protocol , can be readily deployed by CADD researchers and can significantly accelerate the effective exploration of ultra-large portions of a chemical space. Screening chemical databases by computational docking is prohibitively time consuming when the databases are very large. Deep docking is a deep-learning approach aimed at reducing the number of compounds that need to be docked.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助初青酱采纳,获得10
4秒前
科研通AI5应助阿北采纳,获得30
5秒前
8秒前
9秒前
bkagyin应助天桂星采纳,获得10
9秒前
youili完成签到 ,获得积分10
10秒前
龙傲天发布了新的文献求助10
13秒前
Steven发布了新的文献求助10
13秒前
一路有你完成签到 ,获得积分10
16秒前
19秒前
20秒前
20秒前
科研通AI5应助巴达天使采纳,获得10
20秒前
GPR18完成签到,获得积分10
21秒前
22秒前
初青酱发布了新的文献求助10
25秒前
25秒前
星辰大海应助YixiaoWang采纳,获得10
30秒前
慕青应助Npccc采纳,获得10
31秒前
34秒前
可里克里完成签到,获得积分20
35秒前
单纯糖豆完成签到,获得积分10
36秒前
38秒前
xiaoai完成签到 ,获得积分20
39秒前
包子吃多了完成签到 ,获得积分10
40秒前
41秒前
sun2发布了新的文献求助10
42秒前
YixiaoWang发布了新的文献求助10
44秒前
45秒前
Ting完成签到 ,获得积分10
45秒前
安安完成签到 ,获得积分10
46秒前
EVAN完成签到,获得积分10
46秒前
49秒前
49秒前
单身的远山完成签到,获得积分10
49秒前
Npccc发布了新的文献求助10
50秒前
swzzaf完成签到,获得积分10
50秒前
搜集达人应助sun2采纳,获得10
50秒前
mingga完成签到,获得积分10
53秒前
小李老博完成签到,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098