Self-powered flexible handwriting input panel with 1D output enabled by convolutional neural network

可穿戴计算机 计算机科学 卷积神经网络 鉴定(生物学) 人工智能 接口(物质) 人工神经网络 可穿戴技术 模式识别(心理学)
作者
Wei Xu,Sida Liu,Jiayi Yang,Yan Meng,Shuangshuang Liu,Guobin Chen,Lingjie Jia,Xiuhan Li
出处
期刊:Nano Energy [Elsevier BV]
卷期号:101: 107557-107557
标识
DOI:10.1016/j.nanoen.2022.107557
摘要

The growing needs for wearable electronics urge the development of smart human-machine interfaces. Multi-output channels are required for current flexible input panels to realize trajectory detection and user identification functions. Herein, a self-powered flexible input panel with 1D output for multifunctional input detection, including letter recognition, user identification, and digit pattern detection, is proposed. The input panel is ideal for wearable human-machine interface owing to the good conformability of PU membrane to human skin and the robust performance under bending state. A 1D convolutional neural network is designed and optimized to achieve a classification accuracy of 97% on 7 letters and identification accuracy of 96.3% on five participants based on the triboelectric output from the spiral carbon grease electrodes pair of the proposed device. Demonstrations of harvesting energy from fabric contact and real-time digit pattern recognition are proposed to show the potential applications of the proposed input panel. These results generate fresh insight into wearable smart input panel design. A self-powered flexible input panel with 1D output for multifunctional input detection, including letter recognition, user identification, and digit pattern detection, is proposed. The input panel is ideal for wearable human-machine interface owing to the good conformability of PU membrane to human skin and the robust performance under bending state. A 1D convolutional neural network is designed and optimized to achieve a classification accuracy of 97% on 7 letters and identification accuracy of 96.3% on five participants based on the triboelectric output from a pair of helix carbon grease electrodes. • A helix electrode design is proposed to reduce the number of output channels to 1. • Applying the sliding window segmentation method in the data preprocessing of a 1D convolutional neural network. • Chirography differences are extracted by a convolutional neural network from the sequential features in the triboelectric output. • A demonstration of real-time detection of handwritten numbers provides a reference for the design of wearable self-powered input detection devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的访文完成签到,获得积分10
1秒前
香蕉觅云应助aefs采纳,获得10
4秒前
咕咕咕完成签到,获得积分20
8秒前
NANA发布了新的文献求助10
9秒前
11秒前
wqb196发布了新的文献求助10
12秒前
14秒前
童话艺术佳完成签到,获得积分10
15秒前
16秒前
艳子发布了新的文献求助10
17秒前
咕咕咕关注了科研通微信公众号
18秒前
飘逸凌柏发布了新的文献求助10
19秒前
19秒前
21秒前
yu发布了新的文献求助10
21秒前
aefs发布了新的文献求助10
22秒前
23秒前
24秒前
wanci应助wqb196采纳,获得10
25秒前
伍六七发布了新的文献求助10
26秒前
27秒前
英俊的铭应助可可采纳,获得10
29秒前
Echo发布了新的文献求助10
31秒前
林琳发布了新的文献求助10
34秒前
任性的梦菲完成签到,获得积分10
35秒前
37秒前
Echo完成签到,获得积分10
38秒前
Lucides完成签到,获得积分10
39秒前
Tanghx完成签到,获得积分10
39秒前
Tanghx发布了新的文献求助30
42秒前
43秒前
45秒前
哈哈哈完成签到,获得积分10
46秒前
48秒前
刘丽梅完成签到 ,获得积分10
48秒前
51秒前
我爱查文献完成签到,获得积分10
51秒前
52秒前
yuaaaann发布了新的文献求助10
52秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780433
求助须知:如何正确求助?哪些是违规求助? 3325869
关于积分的说明 10224534
捐赠科研通 3040916
什么是DOI,文献DOI怎么找? 1669147
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758653