Detection of Left Ventricular Systolic Dysfunction from Electrocardiographic Images

医学 射血分数 心脏病学 内科学 心力衰竭 接收机工作特性 心电图 人工智能 计算机科学
作者
Veer Sangha,Arash Aghajani Nargesi,Lovedeep Singh Dhingra,Akshay Khunte,Bobak J. Mortazavi,Antônio H. Ribeiro,Evgeniya Banina,Oluwaseun Adeola,Nadish Garg,Cynthia Brandt,Edward J. Miller,Antonio Luiz J Ribeiro,Eric J. Velazquez,Luana Giatti,Sandhi Maria Barreto,Murilo Foppa,Neal Yuan,David Ouyang,Harlan M. Krumholz,Rohan Khera
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:4
标识
DOI:10.1101/2022.06.04.22276000
摘要

ABSTRACT Background Left ventricular (LV) systolic dysfunction is associated with over 8-fold increased risk of heart failure and a 2-fold risk of premature death. The use of electrocardiogram (ECG) signals in screening for LV systolic dysfunction is limited by their availability to clinicians. We developed a novel deep learning-based approach that can use ECG images for the screening of LV systolic dysfunction. Methods Using 12-lead ECGs plotted in multiple different formats, and corresponding echocardiographic data recorded within 15 days from the Yale-New Haven Hospital (YNHH) during 2015-2021, we developed a convolutional neural network algorithm to detect LV ejection fraction < 40%. The model was validated within clinical settings at YNHH as well as externally on ECG images from Cedars Sinai Medical Center in Los Angeles, CA, Lake Regional Hospital (LRH) in Osage Beach, MO, Memorial Hermann Southeast Hospital in Houston, TX, and Methodist Cardiology Clinic of San Antonia, TX. In addition, it was validated in the prospective Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Gradient-weighted class activation mapping was used to localize class-discriminating signals in ECG images. Results Overall, 385,601 ECGs with paired echocardiograms were used for model development. The model demonstrated high discrimination power across various ECG image formats and calibrations in internal validation (area under receiving operation characteristics [AUROC] 0.91, area under precision-recall curve [AUPRC] 0.55), and external sets of ECG images from Cedars Sinai (AUROC 90, AUPRC 0.53), outpatient YNHH clinics (AUROC 0.94, AUPRC 0.77), LRH (AUROC 0.90, AUPRC 0.88), Memorial Hermann Southeast Hospital (AUROC 0.91, AUPRC 0.88), Methodist Cardiology Clinic (AUROC 0.90, AUPRC 0.74), and ELSA-Brasil cohort (AUROC 0.95, AUPRC 0.45). An ECG suggestive of LV systolic dysfunction portended over 27-fold higher odds of LV systolic dysfunction on TTE (OR 27.5, 95% CI, 22.3-33.9 in the held-out set). Class-discriminative patterns localized to the anterior and anteroseptal leads (V2-V3), corresponding to the left ventricle regardless of the ECG layout. A positive ECG screen in individuals with LV ejection fraction ≥ 40% at the time of initial assessment was associated with a 3.9-fold increased risk of developing incident LV systolic dysfunction in the future (HR 3.9, 95% CI 3.3-4.7, median follow-up 3.2 years). Conclusions We developed and externally validated a deep learning model that identifies LV systolic dysfunction from ECG images. This approach represents an automated and accessible screening strategy for LV systolic dysfunction, particularly in low-resource settings. CLINICAL PERSPECTIVE What is New? A convolutional neural network model that accurately identifies LV systolic dysfunction from ECG images across subgroups of age, sex, and race. The model shows robust performance across multiple institutions and health settings, both applied to ECG image databases as well as directly uploaded single ECG images to a web-based application by clinicians. The approach provides information for both screening of LV systolic dysfunction and its risk based on ECG images alone. What are the clinical implications? Our model represents an automated screening strategy for LV systolic dysfunction on a variety of ECG layouts. With availability of ECG images in practice, this approach overcomes implementation challenges of deploying an interoperable screening tool for LV systolic dysfunction in resource-limited settings. This model is available in an online format to facilitate real-time screening for LV systolic dysfunction by clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
华仔应助科研通管家采纳,获得10
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助快乐的保温杯采纳,获得10
1秒前
司空豁应助会会采纳,获得10
3秒前
4秒前
负责笑南发布了新的文献求助10
5秒前
6秒前
zhshp完成签到,获得积分10
6秒前
7秒前
陈晶发布了新的文献求助10
7秒前
阅遍SCI完成签到,获得积分10
9秒前
冰千蕙完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
拼搏从凝关注了科研通微信公众号
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Lucas应助丸子采纳,获得10
13秒前
mjm给小磊的求助进行了留言
14秒前
星辰大海应助乐妙采纳,获得10
16秒前
小马甲应助小赵采纳,获得10
17秒前
yangz发布了新的文献求助10
17秒前
顺顺尼完成签到 ,获得积分10
18秒前
sasa完成签到 ,获得积分10
20秒前
美丽的雨珍完成签到,获得积分10
20秒前
25秒前
26秒前
再炫一袋砂糖橘完成签到 ,获得积分10
27秒前
handsomelin发布了新的文献求助10
29秒前
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202170
求助须知:如何正确求助?哪些是违规求助? 3736953
关于积分的说明 11766910
捐赠科研通 3409343
什么是DOI,文献DOI怎么找? 1870570
邀请新用户注册赠送积分活动 926133
科研通“疑难数据库(出版商)”最低求助积分说明 836402