Land use land cover classification of remote sensing images based on the deep learning approaches: a statistical analysis and review

计算机科学 多样性(控制论) 土地覆盖 灵活性(工程) 预处理器 领域(数学) 深度学习 机器学习 人工智能 数据科学 比例(比率) 数据预处理 数据挖掘 遥感
作者
Monia Digra,Renu Dhir,Nonita Sharma
出处
期刊:Arabian Journal of Geosciences [Springer Science+Business Media]
卷期号:15 (10)
标识
DOI:10.1007/s12517-022-10246-8
摘要

Over the last few years, deep learning (DL) techniques have gained popularity and have become the new standard for data processing in remote sensing analysis. Deep learning architectures have drawn significant attention due to their improved performance in a variety of segmentation, classification, and other machine vision applications. In remote sensing, land use and land cover (LULC) are critical components of a wide variety of environmental applications. Changes in land use on a spatial and temporal scale occur due to accuracy, the capacity to develop, flexibility, uncertainty, structure, and the capability to integrate available models. Therefore, LULC modeling’s high performance demands the employment of a wide variety of model types in remote sensing, which include dynamic, statistical, and DL models. In this study, we first analysed several key findings and research gaps in traditional technology while discussing various software applications used for LULC analysis. Second, the fundamental DL and ML concepts applicable to LULC are introduced with their merits and demerits. We employ a comprehensive review of distinct DL architectures and a custom framework to handle the challenging task of detecting changes in LULC. Subsequently, a detailed statistical analysis is conducted on the”Scopus database” to ascertain current trends in LULC utilising DL methods. This overview encompasses practically all applications and technologies in the field of LULC, from preprocessing to mapping. Finally, we conclude with a proposal for researchers to perform future potential using state-of-the-art methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘德华完成签到,获得积分10
刚刚
廖驰龙关注了科研通微信公众号
刚刚
蚂蚁Y嘿发布了新的文献求助10
2秒前
白立轩发布了新的文献求助10
2秒前
2秒前
naturehome发布了新的文献求助10
2秒前
You完成签到,获得积分10
3秒前
3秒前
4秒前
小果子发布了新的文献求助30
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Ancy应助科研通管家采纳,获得10
4秒前
潺潺流水完成签到,获得积分10
4秒前
在水一方应助科研通管家采纳,获得10
5秒前
易达发布了新的文献求助10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
加菲丰丰应助科研通管家采纳,获得10
5秒前
Thea应助合适的话三个火采纳,获得10
5秒前
善学以致用应助long采纳,获得10
6秒前
7秒前
7秒前
阔达洋葱发布了新的文献求助10
8秒前
9秒前
Ava应助沐风采纳,获得10
9秒前
yufanhui应助黑苗采纳,获得10
9秒前
9秒前
1111111发布了新的文献求助10
10秒前
Akim应助无情的飞飞采纳,获得10
10秒前
Ava应助lizhihahaha采纳,获得10
10秒前
11秒前
郭晓丽发布了新的文献求助10
11秒前
Richard发布了新的文献求助10
12秒前
12秒前
开朗小兔子完成签到,获得积分10
14秒前
白立轩完成签到,获得积分10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4159534
求助须知:如何正确求助?哪些是违规求助? 3695420
关于积分的说明 11670214
捐赠科研通 3387394
什么是DOI,文献DOI怎么找? 1857534
邀请新用户注册赠送积分活动 918525
科研通“疑难数据库(出版商)”最低求助积分说明 831534