Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China

医学 脑炎 接收机工作特性 改良兰金量表 流体衰减反转恢复 无线电技术 内科学 曲线下面积 自身免疫性脑炎 磁共振成像 机器学习 肿瘤科 核医学 放射科 免疫学 病毒 计算机科学 缺血 缺血性中风
作者
Yayun Xiang,Xiaoxuan Dong,Chun Zeng,Junhang Liu,Hanjing Liu,Xiaofei Hu,Jinzhou Feng,Silin Du,Jingjie Wang,Yi Han,Qiang Luo,Shanxiong Chen,Yongmei Li
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:1
标识
DOI:10.3389/fimmu.2022.913703
摘要

To develop a fusion model combining clinical variables, deep learning (DL), and radiomics features to predict the functional outcomes early in patients with adult anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in Southwest China.From January 2012, a two-center study of anti-NMDAR encephalitis was initiated to collect clinical and MRI data from acute patients in Southwest China. Two experienced neurologists independently assessed the patients' prognosis at 24 moths based on the modified Rankin Scale (mRS) (good outcome defined as mRS 0-2; bad outcome defined as mRS 3-6). Risk factors influencing the prognosis of patients with acute anti-NMDAR encephalitis were investigated using clinical data. Five DL and radiomics models trained with four single or combined four MRI sequences (T1-weighted imaging, T2-weighted imaging, fluid-attenuated inversion recovery imaging and diffusion weighted imaging) and a clinical model were developed to predict the prognosis of anti-NMDAR encephalitis. A fusion model combing a clinical model and two machine learning-based models was built. The performances of the fusion model, clinical model, DL-based models and radiomics-based models were compared using the area under the receiver operating characteristic curve (AUC) and accuracy and then assessed by paired t-tests (P < 0.05 was considered significant).The fusion model achieved the significantly greatest predictive performance in the internal test dataset with an AUC of 0.963 [95% CI: (0.874-0.999)], and also significantly exhibited an equally good performance in the external validation dataset, with an AUC of 0.927 [95% CI: (0.688-0.975)]. The radiomics_combined model (AUC: 0.889; accuracy: 0.857) provided significantly superior predictive performance than the DL_combined (AUC: 0.845; accuracy: 0.857) and clinical models (AUC: 0.840; accuracy: 0.905), whereas the clinical model showed significantly higher accuracy. Compared with all single-sequence models, the DL_combined model and the radiomics_combined model had significantly greater AUCs and accuracies.The fusion model combining clinical variables and machine learning-based models may have early predictive value for poor outcomes associated with anti-NMDAR encephalitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w233完成签到,获得积分10
1秒前
1秒前
快乐吗猪完成签到 ,获得积分10
1秒前
dracovu发布了新的文献求助80
2秒前
今后应助Sheelah采纳,获得10
3秒前
3秒前
领导范儿应助霍三石采纳,获得10
3秒前
核桃发布了新的文献求助150
3秒前
3秒前
小蘑菇应助windmill采纳,获得10
3秒前
缓慢修杰发布了新的文献求助10
4秒前
outbed完成签到,获得积分10
4秒前
田様应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
非而者厚应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得30
5秒前
天天快乐应助科研通管家采纳,获得50
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Mr_I完成签到,获得积分10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得30
6秒前
打打应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
碧蓝世界完成签到 ,获得积分10
7秒前
7秒前
kkk完成签到,获得积分10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910