Predicting In Vivo Compound Brain Penetration Using Multi-task Graph Neural Networks

体内 优先次序 计算机科学 人工神经网络 渗透(战争) 人工智能 机器学习 数学 生物 生物技术 管理科学 运筹学 经济
作者
Seid Hamzic,Richard A. Lewis,Sandrine Desrayaud,Cihan Soylu,Mike Fortunato,Grégori Gerebtzoff,Raquel Rodríguez-Pérez
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (13): 3180-3190 被引量:20
标识
DOI:10.1021/acs.jcim.2c00412
摘要

Assessing whether compounds penetrate the brain can become critical in drug discovery, either to prevent adverse events or to reach the biological target. Generally, pre-clinical in vivo studies measuring the ratio of brain and blood concentrations (Kp) are required to estimate the brain penetration potential of a new drug entity. In this work, we developed machine learning models to predict in vivo compound brain penetration (as LogKp) from chemical structure. Our results show the benefit of including in vitro experimental data as auxiliary tasks in multi-task graph neural network (MT-GNN) models. MT-GNNs outperformed single-task (ST) models solely trained on in vivo brain penetration data. The best-performing MT-GNN regression model achieved a coefficient of determination of 0.42 and a mean absolute error of 0.39 (2.5-fold) on a prospective validation set and outperformed all tested ST models. To facilitate decision-making, compounds were classified into brain-penetrant or non-penetrant, achieving a Matthew's correlation coefficient of 0.66. Taken together, our findings indicate that the inclusion of in vitro assay data as MT-GNN auxiliary tasks improves in vivo brain penetration predictions and prospective compound prioritization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
22完成签到,获得积分10
2秒前
羞涩的代男关注了科研通微信公众号
2秒前
iNk应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
Ankher应助科研通管家采纳,获得10
2秒前
Ankher应助科研通管家采纳,获得10
2秒前
Ankher应助科研通管家采纳,获得60
2秒前
打打应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
FIN发布了新的文献求助450
4秒前
彭于晏应助暴躁的元灵采纳,获得10
5秒前
科研通AI5应助iwsaml采纳,获得10
7秒前
白桃乌龙汽水完成签到,获得积分10
7秒前
8秒前
情怀应助带你去喝雪碧采纳,获得10
8秒前
席凡桃发布了新的文献求助20
8秒前
hahahah发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
打打应助Cecilia采纳,获得10
10秒前
11秒前
13秒前
穆青完成签到,获得积分10
14秒前
14秒前
14秒前
悲春伤秋关注了科研通微信公众号
15秒前
15秒前
野草发布了新的文献求助10
15秒前
dfxgsw完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333