中华绒螯蟹
副溶血性弧菌
绒螯蟹
生物
嗜水气单胞菌
微生物学
体内
RNA干扰
重组DNA
分子生物学
基因表达
免疫系统
体外
基因
细菌
核糖核酸
免疫学
生物化学
动物科学
遗传学
生物技术
作者
Linjie Li,Cuizhen Zhang,Qichen Lin,Minjie Zhu,Mei Feng,Shaoqing Jian,Daxian Zhao
标识
DOI:10.1016/j.fsi.2022.03.023
摘要
To elucidate the antibacterial role of peroxinectin (referred to as PXN) and its molecular mechanism in Chinese mitten crab Eriocheir sinensis, we analyzed the bacterial binding and removal of the peroxinectin recombinant protein in vitro and the interaction of peroxinectin with integrin and CuZn-SOD through GST-pulldown and bimolecular fluorescence complementation methods. Concurrently, the effect of peroxinectin interference on the expression of other immune-related genes was studied using RNA interference. The results showed that the recombinant peroxinectin protein could bind to Bacillus subtilis, Staphylococcus aureus, Aeromonas hydrophila, and Vibrio parahaemolyticus with different affinities in vitro and could eliminate Vibrio parahaemolyticus in vivo. The findings also indicated that peroxinectin could establish interactions with integrin and CuZn-SOD in vitro. Furthermore, 48 h after the injection of the peroxinectin gene siRNA in vivo, the expression of peroxinectin mRNA decreased significantly (P < 0.05), integrin mRNA expression decreased by 16.8%, and CuZn-SOD mRNA expression decreased by 62.84% (P < 0.01). The expression levels of Dorsal, GPx, GST, PPAF, and Relish (P < 0.01), as well as that of lectin (P < 0.001) were significantly decreased. When peroxinectin siRNA was injected in vivo for 48 h and Aeromonas hydrophila was injected into mitten crabs, the expression of immune-related genes significantly increased. All data indicate that the recombinant peroxinectin protein in Chinese mitten crabs can recognize and bind different bacteria and promote the elimination of Vibrio parahaemolyticus from the body. Furthermore, peroxinectin may establish interactions with integrin and CuZn-SOD to activate the expression of related immune genes to elicit responses to bacterial infections and achieve immune protection.
科研通智能强力驱动
Strongly Powered by AbleSci AI