Geospatial Transformer Is What You Need for Aircraft Detection in SAR Imagery

计算机科学 地理空间分析 人工智能 合成孔径雷达 卷积神经网络 特征提取 计算机视觉 深度学习 遥感 模式识别(心理学) 地质学
作者
Lifu Chen,Ru Luo,Xing Jin,Zhenhong Li,Zhihui Yuan,Xingmin Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2022.3162235
摘要

Although deep learning techniques have achieved noticeable success in aircraft detection, the scale heterogeneity, position difference, complex background interference, and speckle noise keep aircraft detection in large-scale synthetic aperture radar (SAR) images challenging. To solve these problems, we propose the geospatial transformer framework and implement it as a three-step target detection neural network, namely, the image decomposition, the multiscale geospatial contextual attention network (MGCAN), and result recomposition. First, the given large-scale SAR image is decomposed into slices via sliding windows according to the image characteristics of the aircraft. Second, slices are input into the MGCAN network for feature extraction, and the cluster distance nonmaximum suppression (CD-NMS) is utilized to determine the bounding boxes of aircraft. Finally, the detection results are produced via recomposition. Two innovative geospatial attention modules are proposed within MGCAN, namely, the efficient pyramid convolution attention fusion (EPCAF) module and the parallel residual spatial attention (PRSA) module, to extract multiscale features of the aircraft and suppress background noise. In the experiment, four large-scale SAR images with 1-m resolution from the Gaofen-3 system are tested, which are not included in the dataset. The results indicate that the detection performance of our geospatial transformer is better than Faster R-CNN, SSD, Efficientdet-D0, and YOLOV5s. The geospatial transformer integrates deep learning with SAR target characteristics to fully capture the multiscale contextual information and geospatial information of aircraft, effectively reduces complex background interference, and tackles the position difference of targets. It greatly improves the detection performance of aircraft and offers an effective approach to merge SAR domain knowledge with deep learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
坤坤蹦蹦跳跳完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
cyj完成签到,获得积分10
6秒前
6秒前
Dali完成签到 ,获得积分10
7秒前
鄂霸发布了新的文献求助10
7秒前
大牙发布了新的文献求助10
8秒前
爆米花应助hi派大星采纳,获得10
10秒前
丸子鱼完成签到 ,获得积分10
12秒前
孟愿完成签到,获得积分10
12秒前
jialin完成签到 ,获得积分10
13秒前
cjjwei完成签到 ,获得积分10
13秒前
英俊的铭应助闪闪跳跳糖采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
ShawnLyu应助科研通管家采纳,获得10
21秒前
zgt01应助科研通管家采纳,获得10
21秒前
Sun应助科研通管家采纳,获得10
21秒前
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
22秒前
我是弱智先帮我完成签到,获得积分10
22秒前
科研通AI5应助从容翠丝采纳,获得10
22秒前
隐形的皮卡丘完成签到 ,获得积分10
23秒前
YDSG完成签到,获得积分10
25秒前
26秒前
小鹿呀完成签到,获得积分10
26秒前
27秒前
法克西瓜汁完成签到,获得积分10
28秒前
nana完成签到,获得积分10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801383
求助须知:如何正确求助?哪些是违规求助? 3347052
关于积分的说明 10331704
捐赠科研通 3063333
什么是DOI,文献DOI怎么找? 1681602
邀请新用户注册赠送积分活动 807616
科研通“疑难数据库(出版商)”最低求助积分说明 763818