Radiomics for differentiating minimally invasive adenocarcinoma from precursor lesions in pure ground-glass opacities on chest computed tomography

接收机工作特性 医学 腺癌 非典型腺瘤性增生 放射科 置信区间 磨玻璃样改变 逻辑回归 无线电技术 特征选择 核医学
作者
Yan-qiu Zhu,Chaohui Liu,Yan Mo,Hao Dong,Chencui Huang,Ya-ni Duan,Lei-lei Tang,Yuan-yuan Chu,Jie Qin
出处
期刊:British Journal of Radiology [Wiley]
标识
DOI:10.1259/bjr.20210768
摘要

Objectives: To explore the correlation between radiomic features and the pathology of pure ground-glass opacities (pGGOs), we established a radiomics model for predicting the pathological subtypes of minimally invasive adenocarcinoma (MIA) and precursor lesions. Methods: CT images of 1521 patients with lung adenocarcinoma or precursor lesions appearing as pGGOs on CT in our hospital from January 2015 to March 2021 were analysed retrospectively and selected based on inclusion and exclusion criteria. pGGOs were divided into an atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS) group and an MIA group. Radiomic features were extracted from the original and preprocessed images of the region of interest (ROI). ANOVA and least absolute shrinkage and selection operator (LASSO) feature selection algorithm were used for feature selection. Logistic regression algorithm was used to construct radiomics prediction model. Receiver operating characteristic (ROC) curves were used to evaluate the classification efficiency. Results: 129 pGGOs were included. 2107 radiomic features were extracted from each ROI. 18 radiomic features were eventually selected for model construction. The area under the curve (AUC) of the radiomics model was 0.884 (95% confidence interval (CI), 0.818–0.949) in the training set and 0.872 (95% CI, 0.756–0.988) in the test set, with a sensitivity of 72.73%, specificity of 88.24% and accuracy of 79.47%. The decision curve indicated that the model had a high net benefit rate. Conclusions: The prediction model for pathological subtypes of MIA and precursor lesions in pGGOs demonstrated a high diagnostic accuracy. Advances in knowledge: We focused on lesions appearing as pGGOs on CT and revealed the differences in radiomic features between MIA and precursor lesions. We constructed a radiomics prediction model and improved the diagnostic accuracy for the pathology of MIA and precursor lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助DIY101采纳,获得10
1秒前
Ashley完成签到 ,获得积分10
2秒前
Hydrogen发布了新的文献求助10
2秒前
Bioflying完成签到,获得积分10
2秒前
4秒前
爆米花应助无限的以亦采纳,获得10
5秒前
曾宪俊完成签到 ,获得积分10
6秒前
QZZ完成签到,获得积分10
7秒前
7秒前
离子电池完成签到,获得积分10
7秒前
留胡子的路灯完成签到,获得积分10
9秒前
silin完成签到,获得积分10
10秒前
传奇3应助zzf采纳,获得10
10秒前
qhjqljqd完成签到,获得积分10
11秒前
踏月偷心发布了新的文献求助10
11秒前
roy_chiang完成签到,获得积分10
11秒前
DIY101发布了新的文献求助10
12秒前
Hydrogen完成签到,获得积分10
12秒前
dong完成签到 ,获得积分10
14秒前
满鑫完成签到,获得积分10
15秒前
贺丞完成签到,获得积分10
15秒前
东风完成签到,获得积分10
15秒前
杨一完成签到 ,获得积分10
16秒前
chen完成签到,获得积分10
16秒前
朴实寻真完成签到,获得积分10
17秒前
火星上白羊完成签到,获得积分10
19秒前
阳光的幻雪完成签到 ,获得积分10
20秒前
Lucas应助LLLLLLLL采纳,获得10
21秒前
王志鹏完成签到 ,获得积分10
22秒前
huangwenyu完成签到,获得积分10
23秒前
多情的捕完成签到,获得积分10
24秒前
Ares完成签到,获得积分10
25秒前
26秒前
xiying完成签到 ,获得积分10
27秒前
开朗的绮山完成签到,获得积分10
28秒前
qwe完成签到,获得积分10
28秒前
小权拳的权完成签到,获得积分10
29秒前
EVER完成签到 ,获得积分10
29秒前
502s完成签到,获得积分10
31秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671