Data-Driven Cooperative Control Model of Shearer-Scraper Conveyor Based on Rough Set Theory

铲运机现场 粗集 过程(计算) 集合(抽象数据类型) 实现(概率) 计算机科学 数据挖掘 控制(管理) 控制工程 工业工程 工程类 人工智能 数学 统计 程序设计语言 操作系统 万维网
作者
Shuanfeng Zhao,Jiaojiao Zhao,Zhengxiong Lu,Haitao He,Chuanwei Zhang,Yao Miao,Zhizhong Xing
出处
期刊:Frontiers in Energy Research [Frontiers Media]
卷期号:10 被引量:4
标识
DOI:10.3389/fenrg.2022.811648
摘要

The cooperative control of shearer and scraper conveyors is the prerequisite for the realization of intelligent comprehensive mining equipment and unmanned comprehensive mining workings. However, because of the harsh working face environment, the complex process of comprehensive mining, and the many uncertainties, it is difficult to establish a mathematical model for the cooperative control of shearer and scraper conveyors precisely through the operating mechanism. In the era of big data, the data-driven model has become a popular trend. Therefore, according to the actual production process data, this article proposed a data-driven cooperative control model of shearer–scraper conveyor based on rough set theory. First, the selection method of process monitoring parameters based on rough set theory was proposed to remove redundant parameters and redundant parameter values. Moreover, the decision rule base of cooperative speed regulation of shearer and scraper conveyor was established. Then a collaborative speed regulation decision algorithm based on attribute importance was designed. The algorithm matches the decision rules according to the real-time observation data and then determines the running speed of the shearer. The simulation results show that the proposed data-driven collaborative control model of shearer–scraper conveyor based on rough set theory overcomes the limitations of the mathematical model. It can predict the running speed of shearer well and realize the collaborative speed regulation of shearer–scraper conveyor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kerio完成签到,获得积分10
1秒前
1秒前
星辰大海应助李李李采纳,获得10
1秒前
1秒前
科研通AI5应助满满采纳,获得10
3秒前
Auster发布了新的文献求助10
3秒前
尔尔发布了新的文献求助10
4秒前
超级碧曼发布了新的文献求助10
4秒前
Earth完成签到,获得积分10
4秒前
5秒前
Owen应助QianYang采纳,获得10
5秒前
yiliu发布了新的文献求助30
5秒前
5秒前
橙花完成签到 ,获得积分10
6秒前
顺安完成签到,获得积分10
7秒前
7秒前
所所应助热心的不悔采纳,获得10
8秒前
8秒前
满满完成签到,获得积分20
9秒前
小马甲应助zcg采纳,获得10
11秒前
11秒前
11秒前
12秒前
糟糕的铁锤应助ucjudgo采纳,获得100
12秒前
Angenstern完成签到 ,获得积分10
12秒前
12秒前
伊思发布了新的文献求助10
13秒前
14秒前
zxe发布了新的文献求助10
14秒前
15秒前
15秒前
crd发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
慕青应助yuchuncheng采纳,获得10
16秒前
18秒前
李李李发布了新的文献求助10
18秒前
非也的非也完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113