TDACNN: Target-domain-free domain adaptation convolutional neural network for drift compensation in gas sensors

计算机科学 Softmax函数 人工智能 分类器(UML) 模式识别(心理学) 卷积神经网络 嵌入 鉴别器 域适应 领域(数学分析) 概念漂移 算法 机器学习 数学 探测器 电信 数学分析 数据流挖掘
作者
Yuelin Zhang,Sihao Xiang,Zehuan Wang,Xiaoyan Peng,Yutong Tian,Shukai Duan,Yan Jia
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:361: 131739-131739 被引量:43
标识
DOI:10.1016/j.snb.2022.131739
摘要

Sensor drift is a long-existing unpredictable problem that deteriorates the performance of gaseous substance recognition, calling for an antidrift domain adaptation algorithm. However, the prerequisite for traditional methods to achieve fine results is to have data from both nondrift distributions (source domain) and drift distributions (target domain) for domain alignment, which is usually unrealistic and unachievable in real-life scenarios. To compensate for this, in this paper, deep learning based on a target-domain-free domain adaptation convolutional neural network (TDACNN) is proposed. The main concept is that CNNs extract not only the domain-specific features of samples but also the domain-invariant features underlying both the source and target domains. Making full use of these various levels of embedding features can lead to comprehensive utilization of different levels of characteristics, thus achieving drift compensation by the extracted intermediate features between two domains. In the TDACNN, a flexible multibranch backbone with a multiclassifier structure is proposed under the guidance of bionics, which utilizes multiple embedding features comprehensively without involving target domain data during training. A classifier ensemble method based on maximum mean discrepancy (MMD) is proposed to evaluate all the classifiers jointly based on the credibility of the pseudolabel. To optimize network training, an additive angular margin softmax loss with parameter dynamic adjustment is utilized. Experiments on two drift datasets under different settings demonstrate the superiority of TDACNN compared with several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abc发布了新的文献求助10
刚刚
爆米花应助孤巷的猫采纳,获得10
刚刚
2秒前
lvlijun发布了新的文献求助10
2秒前
chai发布了新的文献求助10
2秒前
科研通AI5应助东方耀采纳,获得10
3秒前
无花果应助花楹采纳,获得10
3秒前
酷波er应助研友_LBKqyn采纳,获得10
3秒前
科研猪完成签到,获得积分10
4秒前
4秒前
Zzy完成签到,获得积分10
5秒前
饱满不惜完成签到,获得积分20
5秒前
5秒前
小蘑菇应助山南水北采纳,获得30
5秒前
5秒前
xhj666完成签到,获得积分10
5秒前
老实难敌发布了新的文献求助10
6秒前
科研通AI5应助下雨采纳,获得10
7秒前
7秒前
Upupuu发布了新的文献求助10
7秒前
Theprisoners发布了新的文献求助10
7秒前
今后应助米米采纳,获得10
7秒前
Akim应助自由寒云采纳,获得10
8秒前
CodeCraft应助lvlijun采纳,获得10
8秒前
8秒前
wrwywzx发布了新的文献求助10
8秒前
阿白完成签到,获得积分10
9秒前
可爱的函函应助just采纳,获得10
9秒前
ysyslalala完成签到,获得积分10
10秒前
10秒前
丘比特应助科研圈外人采纳,获得10
11秒前
22完成签到,获得积分20
11秒前
达夫斯基完成签到,获得积分10
12秒前
Orange应助TYT采纳,获得10
12秒前
13秒前
朱大头完成签到,获得积分10
13秒前
14秒前
14秒前
younghippo发布了新的文献求助30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
理论力学 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4464173
求助须知:如何正确求助?哪些是违规求助? 3926519
关于积分的说明 12185073
捐赠科研通 3579284
什么是DOI,文献DOI怎么找? 1966586
邀请新用户注册赠送积分活动 1005238
科研通“疑难数据库(出版商)”最低求助积分说明 899634