TDACNN: Target-domain-free domain adaptation convolutional neural network for drift compensation in gas sensors

计算机科学 Softmax函数 人工智能 分类器(UML) 模式识别(心理学) 卷积神经网络 嵌入 鉴别器 域适应 领域(数学分析) 概念漂移 算法 机器学习 数学 探测器 数学分析 数据流挖掘 电信
作者
Yuelin Zhang,Sihao Xiang,Zehuan Wang,Xiaoyan Peng,Yutong Tian,Shukai Duan,Yan Jia
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:361: 131739-131739 被引量:45
标识
DOI:10.1016/j.snb.2022.131739
摘要

Sensor drift is a long-existing unpredictable problem that deteriorates the performance of gaseous substance recognition, calling for an antidrift domain adaptation algorithm. However, the prerequisite for traditional methods to achieve fine results is to have data from both nondrift distributions (source domain) and drift distributions (target domain) for domain alignment, which is usually unrealistic and unachievable in real-life scenarios. To compensate for this, in this paper, deep learning based on a target-domain-free domain adaptation convolutional neural network (TDACNN) is proposed. The main concept is that CNNs extract not only the domain-specific features of samples but also the domain-invariant features underlying both the source and target domains. Making full use of these various levels of embedding features can lead to comprehensive utilization of different levels of characteristics, thus achieving drift compensation by the extracted intermediate features between two domains. In the TDACNN, a flexible multibranch backbone with a multiclassifier structure is proposed under the guidance of bionics, which utilizes multiple embedding features comprehensively without involving target domain data during training. A classifier ensemble method based on maximum mean discrepancy (MMD) is proposed to evaluate all the classifiers jointly based on the credibility of the pseudolabel. To optimize network training, an additive angular margin softmax loss with parameter dynamic adjustment is utilized. Experiments on two drift datasets under different settings demonstrate the superiority of TDACNN compared with several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fzh发布了新的文献求助10
1秒前
mutong应助邵南松采纳,获得10
2秒前
yingying完成签到,获得积分20
2秒前
3秒前
嬴炎发布了新的文献求助10
3秒前
VIOLET发布了新的文献求助10
3秒前
科研通AI6应助song采纳,获得10
4秒前
4秒前
MR_Z发布了新的文献求助20
4秒前
4秒前
4秒前
4秒前
王筱宁发布了新的文献求助10
4秒前
5秒前
莱丽完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
wanci应助毛钱采纳,获得10
7秒前
yingying发布了新的文献求助10
7秒前
7秒前
imchenyin完成签到,获得积分10
8秒前
8秒前
8秒前
shier完成签到,获得积分20
8秒前
邹嘉锋完成签到,获得积分10
9秒前
笛卡尔发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
今后应助平平采纳,获得10
10秒前
fei发布了新的文献求助10
10秒前
11秒前
慕青应助王筱宁采纳,获得10
11秒前
shier发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
长情白柏发布了新的文献求助10
12秒前
Aike发布了新的文献求助10
13秒前
Owen应助1628采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002