In situ engineering of highly conductive TiO2/carbon heterostructure fibers for enhanced electrocatalytic degradation of water pollutants

材料科学 碳化 电催化剂 电极 化学工程 纳米复合材料 降级(电信) 电导率 金红石 纳米技术 复合材料 电化学 化学 扫描电子显微镜 工程类 电信 物理化学 计算机科学
作者
Jhen‐Cih Wu,Yi-Hsueh Chuang,Sofia Ya Hsuan Liou,Qilin Li,Chia‐Hung Hou
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:429: 128328-128328 被引量:39
标识
DOI:10.1016/j.jhazmat.2022.128328
摘要

Rational design of nanocomposite electrode materials with high conductivity, activity, and mechanical strength is critical in electrocatalysis. Herein, freestanding, flexible heteronanocomposites were fabricated in situ by carbonizing electrospun fibers with TiO2 nanoparticles on the surface for electrocatalytic degradation of water pollutants. The carbonization temperature was observed as a dominant parameter affecting the characteristics of the electrodes. As the carbonization temperature increased to 1000 °C, the conductivity of the electrode was significantly enhanced due to the high degree of graphitization (ID/IG ratio 1.10) and the dominant rutile phase. Additionally, the formation of TiO2 protrusions and the C-Ti heterostructure were observed at 1000 °C, which contributed to increasing the electrocatalytic activity. When 1.5 V (vs. Ag/AgCl) was employed, electrocatalytic experiments using the electrode achieved 90% degradation of crystal violet and 10.9-87.5% for an array of micropollutants. The electrical energy-per-order (EEO) for the removal of crystal violet was 0.7 kWh/m3/order, indicative of low-energy requirement. The efficient electrocatalytic activity can be ascribed to the fast electron transfer and the strong ability to generate hydroxyl radicals. Our findings expand efforts for the design of highly conductive heteronanocomposites in a facile in situ approach, providing a promising perspective for the energy-efficient electrocatalytic degradation of water pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
81299完成签到,获得积分20
刚刚
8R60d8应助我要资料啊采纳,获得10
刚刚
du完成签到 ,获得积分10
刚刚
yyyyy发布了新的文献求助10
1秒前
汹涌澎湃发布了新的文献求助10
1秒前
1秒前
丸子发布了新的文献求助20
1秒前
麦热穆罕完成签到,获得积分10
1秒前
falcon发布了新的文献求助30
3秒前
4秒前
Hello应助Gloriauuu采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
12发布了新的文献求助10
6秒前
liu完成签到 ,获得积分10
8秒前
星辰大海应助81299采纳,获得10
8秒前
财年发布了新的文献求助10
8秒前
斯文败类应助cssfsa采纳,获得10
8秒前
9秒前
9秒前
哭泣的不言关注了科研通微信公众号
10秒前
充电宝应助cyy2339采纳,获得10
10秒前
10秒前
脑洞疼应助开心的绮玉采纳,获得10
10秒前
芭乐发布了新的文献求助10
10秒前
12秒前
12秒前
14秒前
14秒前
14秒前
科研通AI6应助KD采纳,获得10
14秒前
文献求助发布了新的文献求助10
15秒前
浮游应助yyyyy采纳,获得30
16秒前
淡淡梨愁完成签到,获得积分10
17秒前
积极的思真完成签到 ,获得积分10
17秒前
馥郁发布了新的文献求助10
17秒前
大蘑菇炒小蘑菇完成签到,获得积分10
17秒前
姜旭阳发布了新的文献求助10
18秒前
linxiang发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481783
求助须知:如何正确求助?哪些是违规求助? 4582732
关于积分的说明 14386753
捐赠科研通 4511532
什么是DOI,文献DOI怎么找? 2472396
邀请新用户注册赠送积分活动 1458660
关于科研通互助平台的介绍 1432181