Multi-Objective Two-Echelon City Dispatching Problem With Mobile Satellites and Crowd-Shipping

计算机科学 车辆路径问题 趋同(经济学) 多目标优化 城市物流 布线(电子设计自动化) 运筹学 帕累托原理 运输工程 数学优化 工程类 计算机网络 机器学习 数学 经济 经济增长
作者
Yulin Lan,Fagui Liu,Wing W. Y. Ng,Mengke Gui,Chengqi Lai
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 15340-15353 被引量:16
标识
DOI:10.1109/tits.2022.3140351
摘要

Recently, a two-echelon city dispatching model with mobile satellites (2ECD-MS) has been proposed to reduce costs effectively. However, in addition to costs, speeds of delivery to customers are increasingly demanding in urban dispatching. This work extends 2ECD-MS to 2ECD-MS-CS by adopting the crowd-shipping model in the second-echelon dispatching, which uses occasional drivers of private vehicles to deliver parcels to improve the delivery speed. Furthermore, existing works generally consider the optimization from a single aspect, e.g., the delivery company. However, the sustainable development of a logistics company must also focus on other subjects in logistics activities, such as customers and delivery employees. So, we define a multi-objective model considering company cost, customer satisfaction, and income satisfaction of crowd-shippers simultaneously. The multi-objective optimization problem of 2ECD-MS-CS is solved by a multi-directional evolutionary algorithm (MDEA). In MDEA, multiple neighborhood operators are designed and combined with the multi-directional search strategy to fully explore the Pareto Front. Finally, we generate 40 new 2ECD-MS-CS instances based on existing common vehicle routing datasets. Experimental results show that 2ECD-MS-CS reduces the average cost by 3.4% and improves the delivery speed by 42% against 2ECD-MS in 40 instances with different customer scales, numbers of mobile satellites, and geographic scopes. The proposed MDEA outperforms several popular multi-objective optimization algorithms in both convergence and diversity. These illustrate the advantages of 2ECD-MS-CS especially in terms of delivery speed and the effectiveness of the proposed MDEA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助於伟祺采纳,获得20
刚刚
WFLLL发布了新的文献求助10
1秒前
雪中完成签到 ,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得200
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
饼饼应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
Rubby应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得30
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
翁雁丝完成签到 ,获得积分10
4秒前
亦安完成签到,获得积分10
5秒前
可靠半青完成签到 ,获得积分10
7秒前
桐桐应助时来采纳,获得10
11秒前
所所应助明天采纳,获得30
13秒前
15秒前
研友_nq5kKn完成签到,获得积分0
16秒前
你吃饱了吗完成签到,获得积分10
17秒前
搜集达人应助rmbsLHC采纳,获得10
18秒前
xunxunmimi完成签到,获得积分10
19秒前
19秒前
漂亮平蓝发布了新的文献求助10
20秒前
健忘鞋垫完成签到,获得积分10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132221
求助须知:如何正确求助?哪些是违规求助? 3668914
关于积分的说明 11602984
捐赠科研通 3366087
什么是DOI,文献DOI怎么找? 1849323
邀请新用户注册赠送积分活动 912980
科研通“疑难数据库(出版商)”最低求助积分说明 828384