A Data-Adaptive Loss Function for Incomplete Data and Incremental Learning in Semantic Image Segmentation

计算机科学 卷积神经网络 人工智能 深度学习 机器学习 基本事实 图像(数学) 分割 功能(生物学) 图像分割 上下文图像分类 医学影像学 领域(数学) 数据建模 领域(数学分析) 数据挖掘 模式识别(心理学) 数学分析 数学 数据库 进化生物学 纯数学 生物
作者
Minh H. Vu,Gabriella Norman,Tufve Nyholm,Tommy Löfstedt
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (6): 1320-1330 被引量:11
标识
DOI:10.1109/tmi.2021.3139161
摘要

In the last years, deep learning has dramatically improved the performances in a variety of medical image analysis applications. Among different types of deep learning models, convolutional neural networks have been among the most successful and they have been used in many applications in medical imaging. Training deep convolutional neural networks often requires large amounts of image data to generalize well to new unseen images. It is often time-consuming and expensive to collect large amounts of data in the medical image domain due to expensive imaging systems, and the need for experts to manually make ground truth annotations. A potential problem arises if new structures are added when a decision support system is already deployed and in use. Since the field of radiation therapy is constantly developing, the new structures would also have to be covered by the decision support system. In the present work, we propose a novel loss function to solve multiple problems: imbalanced datasets, partially-labeled data, and incremental learning. The proposed loss function adapts to the available data in order to utilize all available data, even when some have missing annotations. We demonstrate that the proposed loss function also works well in an incremental learning setting, where an existing model is easily adapted to semi-automatically incorporate delineations of new organs when they appear. Experiments on a large in-house dataset show that the proposed method performs on par with baseline models, while greatly reducing the training time and eliminating the hassle of maintaining multiple models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ghn123456789完成签到,获得积分10
1秒前
stark完成签到,获得积分10
2秒前
田様应助车窗外采纳,获得10
2秒前
7890733发布了新的文献求助10
3秒前
贾明灵完成签到,获得积分10
4秒前
6秒前
dan完成签到,获得积分10
6秒前
赵十一完成签到,获得积分10
7秒前
沃若完成签到 ,获得积分10
8秒前
得唔闻完成签到 ,获得积分10
8秒前
yh完成签到,获得积分10
8秒前
风中冰香应助时来运转采纳,获得10
9秒前
wnche完成签到,获得积分10
9秒前
orixero应助健忘的魔女采纳,获得10
9秒前
安静的猴子完成签到 ,获得积分20
9秒前
浮游应助hou采纳,获得10
10秒前
zlh0完成签到,获得积分10
10秒前
英俊的铭应助大方研究生采纳,获得10
10秒前
yc完成签到,获得积分10
10秒前
YT完成签到 ,获得积分10
11秒前
刘泗青应助7890733采纳,获得10
13秒前
orixero应助7890733采纳,获得10
13秒前
吕敬瑶完成签到,获得积分10
13秒前
溜了溜了完成签到,获得积分10
14秒前
青牛完成签到,获得积分10
15秒前
15秒前
暴躁的眼神完成签到,获得积分10
16秒前
舒琪完成签到,获得积分10
17秒前
稻草人完成签到 ,获得积分10
17秒前
铁马冰河入梦来完成签到 ,获得积分10
19秒前
思源应助hchen采纳,获得10
19秒前
20秒前
Ally发布了新的文献求助10
22秒前
韩老魔完成签到,获得积分10
22秒前
23秒前
小怪完成签到,获得积分10
24秒前
24秒前
阿烨完成签到,获得积分10
26秒前
花南星完成签到,获得积分10
27秒前
打打应助倪佳采纳,获得10
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213020
求助须知:如何正确求助?哪些是违规求助? 4388978
关于积分的说明 13665491
捐赠科研通 4249811
什么是DOI,文献DOI怎么找? 2331792
邀请新用户注册赠送积分活动 1329520
关于科研通互助平台的介绍 1283054