A Data-Adaptive Loss Function for Incomplete Data and Incremental Learning in Semantic Image Segmentation

计算机科学 卷积神经网络 人工智能 深度学习 机器学习 基本事实 图像(数学) 分割 功能(生物学) 图像分割 上下文图像分类 医学影像学 领域(数学) 数据建模 领域(数学分析) 数据挖掘 模式识别(心理学) 数学分析 数学 数据库 进化生物学 纯数学 生物
作者
Minh H. Vu,Gabriella Norman,Tufve Nyholm,Tommy Löfstedt
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (6): 1320-1330 被引量:11
标识
DOI:10.1109/tmi.2021.3139161
摘要

In the last years, deep learning has dramatically improved the performances in a variety of medical image analysis applications. Among different types of deep learning models, convolutional neural networks have been among the most successful and they have been used in many applications in medical imaging. Training deep convolutional neural networks often requires large amounts of image data to generalize well to new unseen images. It is often time-consuming and expensive to collect large amounts of data in the medical image domain due to expensive imaging systems, and the need for experts to manually make ground truth annotations. A potential problem arises if new structures are added when a decision support system is already deployed and in use. Since the field of radiation therapy is constantly developing, the new structures would also have to be covered by the decision support system. In the present work, we propose a novel loss function to solve multiple problems: imbalanced datasets, partially-labeled data, and incremental learning. The proposed loss function adapts to the available data in order to utilize all available data, even when some have missing annotations. We demonstrate that the proposed loss function also works well in an incremental learning setting, where an existing model is easily adapted to semi-automatically incorporate delineations of new organs when they appear. Experiments on a large in-house dataset show that the proposed method performs on par with baseline models, while greatly reducing the training time and eliminating the hassle of maintaining multiple models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
眯眯眼的板栗完成签到,获得积分10
刚刚
liao应助天蓝采纳,获得30
1秒前
2秒前
shaft完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Leexxxhaoo完成签到,获得积分10
4秒前
B站萧亚轩完成签到,获得积分10
5秒前
华仔应助liuyang采纳,获得10
6秒前
6秒前
在水一方应助泽佑采纳,获得10
7秒前
一期一发布了新的文献求助10
9秒前
我不到啊完成签到,获得积分10
10秒前
11秒前
周星星完成签到 ,获得积分10
12秒前
高子懿完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
多宝鱼发布了新的文献求助10
16秒前
ceeray23应助ilc采纳,获得10
18秒前
18秒前
ddddd发布了新的文献求助10
18秒前
gf发布了新的文献求助10
19秒前
19秒前
高兴的土豆关注了科研通微信公众号
19秒前
红柚完成签到,获得积分10
21秒前
21秒前
顾矜应助dengdeng采纳,获得10
22秒前
华仔应助emile采纳,获得10
25秒前
红柚发布了新的文献求助10
25秒前
娃哈哈完成签到,获得积分10
27秒前
英吉利25发布了新的文献求助10
27秒前
Llllllllily完成签到,获得积分10
29秒前
ZZB完成签到,获得积分10
29秒前
29秒前
动听白秋完成签到 ,获得积分10
30秒前
酷波er应助ilc采纳,获得10
30秒前
刻苦的绿真完成签到 ,获得积分10
33秒前
我测你码发布了新的文献求助10
33秒前
小田田完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495384
求助须知:如何正确求助?哪些是违规求助? 4593053
关于积分的说明 14439596
捐赠科研通 4525892
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464570
关于科研通互助平台的介绍 1437425