已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Discriminative Cross-Modality Features for RGB-D Saliency Detection

RGB颜色模型 人工智能 判别式 模式识别(心理学) 计算机科学 相关性 模态(人机交互) 特征(语言学) 计算机视觉 串联(数学) 像素 光学(聚焦) 分割 数学 组合数学 语言学 光学 物理 哲学 几何学
作者
Fengyun Wang,Jinshan Pan,Shoukun Xu,Jinhui Tang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1285-1297 被引量:88
标识
DOI:10.1109/tip.2022.3140606
摘要

How to explore useful information from depth is the key success of the RGB-D saliency detection methods. While the RGB and depth images are from different domains, a modality gap will lead to unsatisfactory results for simple feature concatenation. Towards better performance, most methods focus on bridging this gap and designing different cross-modal fusion modules for features, while ignoring explicitly extracting some useful consistent information from them. To overcome this problem, we develop a simple yet effective RGB-D saliency detection method by learning discriminative cross-modality features based on the deep neural network. The proposed method first learns modality-specific features for RGB and depth inputs. And then we separately calculate the correlations of every pixel-pair in a cross-modality consistent way, i.e., the distribution ranges are consistent for the correlations calculated based on features extracted from RGB (RGB correlation) or depth inputs (depth correlation). From different perspectives, color or spatial, the RGB and depth correlations end up at the same point to depict how tightly each pixel-pair is related. Secondly, to complemently gather RGB and depth information, we propose a novel correlation-fusion to fuse RGB and depth correlations, resulting in a cross-modality correlation. Finally, the features are refined with both long-range cross-modality correlations and local depth correlations to predict salient maps. In which, the long-range cross-modality correlation provides context information for accurate localization, and the local depth correlation keeps good subtle structures for fine segmentation. In addition, a lightweight DepthNet is designed for efficient depth feature extraction. We solve the proposed network in an end-to-end manner. Both quantitative and qualitative experimental results demonstrate the proposed algorithm achieves favorable performance against state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
1秒前
meimei完成签到 ,获得积分10
5秒前
同學你該吃藥了完成签到 ,获得积分10
9秒前
可耐的碧完成签到,获得积分10
11秒前
大葱鸭完成签到,获得积分10
11秒前
烟里戏完成签到 ,获得积分10
15秒前
芒果完成签到 ,获得积分10
18秒前
LL完成签到,获得积分10
21秒前
忧虑的初晴完成签到,获得积分10
23秒前
cyanpomelo应助LL采纳,获得10
25秒前
25秒前
老王发布了新的文献求助10
26秒前
qqq完成签到,获得积分10
29秒前
Jenny发布了新的文献求助10
30秒前
SciKid524完成签到 ,获得积分10
32秒前
33秒前
Qiqinnn完成签到 ,获得积分10
35秒前
36秒前
科研通AI5应助fate采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
小马甲应助科研通管家采纳,获得10
39秒前
NexusExplorer应助科研通管家采纳,获得10
39秒前
43秒前
poolgreen关注了科研通微信公众号
44秒前
45秒前
ET完成签到,获得积分10
46秒前
48秒前
老王完成签到,获得积分10
48秒前
rengar完成签到,获得积分10
49秒前
冷艳的鞯发布了新的文献求助10
49秒前
hanhan完成签到 ,获得积分10
49秒前
传奇3应助小金刀采纳,获得10
57秒前
论文侠完成签到 ,获得积分10
58秒前
banbieshenlu完成签到,获得积分10
58秒前
小二郎应助冷艳的鞯采纳,获得10
58秒前
1分钟前
从容化蛹完成签到,获得积分20
1分钟前
1分钟前
SciGPT应助多发paper啊采纳,获得10
1分钟前
从容化蛹发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800847
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329133
捐赠科研通 3062794
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702