A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study

无线电技术 医学 列线图 肺癌 免疫疗法 队列 接收机工作特性 肿瘤科 内科学 癌症 回顾性队列研究 放射科
作者
Haipeng Tong,Jinju Sun,Jingqin Fang,Mi Zhang,Huan Liu,Renxiang Xia,Weicheng Zhou,Kaijun Liu,Xiaohong Chen
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:56
标识
DOI:10.3389/fimmu.2022.859323
摘要

Background The tumor immune microenvironment (TIME) phenotypes have been reported to mainly impact the efficacy of immunotherapy. Given the increasing use of immunotherapy in cancers, knowing an individual’s TIME phenotypes could be helpful in screening patients who are more likely to respond to immunotherapy. Our study intended to establish, validate, and apply a machine learning model to predict TIME profiles in non-small cell lung cancer (NSCLC) by using 18 F-FDG PET/CT radiomics and clinical characteristics. Methods The RNA-seq data of 1145 NSCLC patients from The Cancer Genome Atlas (TCGA) cohort were analyzed. Then, 221 NSCLC patients from Daping Hospital (DPH) cohort received 18 F-FDG PET/CT scans before treatment and CD8 expression of the tumor samples were tested. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images and develop a radiomics signature. The models were established by radiomics, clinical features, and radiomics-clinical combination, respectively, the performance of which was calculated by receiver operating curves (ROCs) and compared by DeLong test. Moreover, based on radiomics score (Rad-score) and clinical features, a nomogram was established. Finally, we applied the combined model to evaluate TIME phenotypes of NSCLC patients in The Cancer Imaging Archive (TCIA) cohort (n = 39). Results TCGA data showed CD8 expression could represent the TIME profiles in NSCLC. In DPH cohort, PET/CT radiomics model outperformed CT model (AUC: 0.907 vs. 0.861, P = 0.0314) to predict CD8 expression. Further, PET/CT radiomics-clinical combined model (AUC = 0.932) outperformed PET/CT radiomics model (AUC = 0.907, P = 0.0326) or clinical model (AUC = 0.868, P = 0.0036) to predict CD8 expression. In the TCIA cohort, the predicted CD8-high group had significantly higher immune scores and more activated immune pathways than the predicted CD8-low group ( P = 0.0421). Conclusion Our study indicates that 18 F-FDG PET/CT radiomics-clinical combined model could be a clinically practical method to non-invasively detect the tumor immune status in NSCLCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自行设置完成签到,获得积分10
刚刚
科研通AI5应助鲜榨白开水采纳,获得10
1秒前
1秒前
Moonsa完成签到 ,获得积分10
1秒前
1秒前
杳鸢应助平淡的翠霜采纳,获得10
1秒前
YJ888发布了新的文献求助10
2秒前
肖萍花发布了新的文献求助10
5秒前
7秒前
Akim应助YJ888采纳,获得10
8秒前
8秒前
8秒前
9秒前
赵云江完成签到,获得积分10
9秒前
9秒前
国宝完成签到,获得积分10
12秒前
wmj发布了新的文献求助10
12秒前
jenningseastera应助mini的yr采纳,获得20
13秒前
自由抽屉发布了新的文献求助10
15秒前
科研通AI2S应助六水居士采纳,获得10
15秒前
十一发布了新的文献求助10
15秒前
15秒前
空岛与影完成签到,获得积分20
17秒前
自不惊扰完成签到,获得积分10
18秒前
18秒前
空岛与影发布了新的文献求助30
20秒前
SYLH应助Rita采纳,获得10
20秒前
21秒前
天真的秋翠完成签到,获得积分10
21秒前
暴打脆脆鲨完成签到,获得积分10
23秒前
一苇以航发布了新的文献求助10
23秒前
yy完成签到,获得积分10
24秒前
wmj完成签到,获得积分10
25秒前
25秒前
galioo3000发布了新的文献求助10
26秒前
甜蜜弱发布了新的文献求助10
27秒前
小二郎应助彭凯歌采纳,获得10
29秒前
1111111完成签到,获得积分20
32秒前
迷路世开完成签到,获得积分10
34秒前
galioo3000完成签到,获得积分20
34秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839851
求助须知:如何正确求助?哪些是违规求助? 3382113
关于积分的说明 10521335
捐赠科研通 3101547
什么是DOI,文献DOI怎么找? 1708111
邀请新用户注册赠送积分活动 822196
科研通“疑难数据库(出版商)”最低求助积分说明 773208