Edge-Based Federated Deep Reinforcement Learning for IoT Traffic Management

强化学习 计算机科学 GSM演进的增强数据速率 边缘设备 分布式计算 计算机网络 物联网 边缘计算 选择(遗传算法) 回程(电信) 人工智能 基站 计算机安全 云计算 操作系统
作者
Abdallah Jarwan,Mohamed Ibnkahla
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 3799-3813 被引量:9
标识
DOI:10.1109/jiot.2022.3174469
摘要

The wide adoption of large-scale Internet of Things (IoT) systems has led to an unprecedented increase in backhaul (BH) traffic congestion, making it critical to optimize traffic management at the network edge. In IoT systems, the BH network is supported by various backhauling technologies that have different characteristics. Also, the characteristics of the BH links can be sometimes time varying and have an unknown state, due to external factors such as having the resources shared with other systems. It is the responsibility of the edge devices to be able to forward IoT traffic through the unknown-state BH network by selecting the suitable BH link for each collected data flow. To the best of our knowledge, this type of BH selection problem is not addressed in the literature. Therefore, there is a crucial need to develop intelligent approaches enabling edge devices to learn how to deal with unknown-state (partially observable) components of the BH network, which is the primary goal of this article. We propose an edge-based BH selection technique for improving traffic delivery by exploiting multiobjective feedback on delivery performance. The proposed approach relies on the advantage-actor–critic deep reinforcement learning (DRL) methods. Moreover, to improve the DRL training performance in large-scale deployments of distributed IoT systems, federated learning (FL) is applied to enable multiple edge devices to collaborate in training a shared BH selection policy. The proposed federated DRL (F-DRL) approach is able to solve the BH selection problem as verified and demonstrated through extensive simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜圈发布了新的文献求助10
4秒前
长风完成签到,获得积分10
5秒前
5秒前
6秒前
小鱼完成签到,获得积分10
9秒前
土豆侠发布了新的文献求助10
12秒前
12秒前
Starry完成签到,获得积分10
14秒前
15秒前
半柚发布了新的文献求助10
20秒前
思源应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
可爱的函函应助想不想采纳,获得10
24秒前
LJR完成签到,获得积分10
24秒前
28秒前
小马甲应助han采纳,获得10
32秒前
搜集达人应助天空采纳,获得10
32秒前
33秒前
36秒前
肖永辉完成签到,获得积分10
36秒前
应应发布了新的文献求助10
37秒前
39秒前
40秒前
Jasper应助happily遇采纳,获得10
42秒前
42秒前
Xcentimeter完成签到,获得积分10
43秒前
han发布了新的文献求助10
43秒前
现代凝安发布了新的文献求助10
45秒前
puhu应助Xcentimeter采纳,获得10
46秒前
48秒前
han完成签到,获得积分10
49秒前
星河在眼里完成签到,获得积分10
49秒前
xh完成签到,获得积分10
49秒前
MOLLY完成签到,获得积分10
49秒前
50秒前
54秒前
happily遇发布了新的文献求助10
55秒前
糟糕的学姐完成签到,获得积分10
56秒前
58秒前
甜甜圈完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783222
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10236984
捐赠科研通 3043669
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126