A General Autonomous Driving Planner Adaptive to Scenario Characteristics

规划师 计算机科学 边界(拓扑) 运动规划 工作(物理) 模拟 工程类 人工智能 机器人 数学 机械工程 数学分析
作者
Xinyu Jiao,Zhong Cao,Junjie Chen,Kun Jiang,Diange Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 21228-21240 被引量:2
标识
DOI:10.1109/tits.2022.3185491
摘要

Autonomous vehicle requires a general planner for all possible scenarios. Existing researches design such a planner by a unified scenario description. However, it may significantly increase the planner complexity even in some simple tasks, e.g., car following, further resulting in unsatisfactory driving performance. This work aims to design a general planner which can 1) drive in all possible scenarios and 2) have lower complexity in some common scenarios. To this end, this work proposes a pertinent boundary for multi-scenario driving planning. The total approach is named as Pertinent Boundary-based Unified Decision system. Based on the original drivable area, the pertinent boundary can further support motion status and semantics of the traffic elements, which provides the potential of pertinent performance for given scenarios. The pertinent boundary can support unified driving with the drivable area, in the meantime, can be pertinently modified to support the pertinent driving decisions for identified driving scenarios (e.g., car-following, junction left turning). It will further avoid the bump between the connections of the scenarios due to the continuity of space boundary. Thus, the planner is suitable for the fully autonomous driving. The proposed method is validated in different classical driving decision scenarios. Results show that the proposed method can support pertinent driving decisions in identified scenarios, in the meantime, assure generalized cross-scenario planning when no scenario information is available. Such a method shed light on fully autonomous driving by pertinence improvement of multi-scenario decision in the complex real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiwan发布了新的文献求助10
刚刚
刚刚
今后应助风中的语堂采纳,获得10
刚刚
1秒前
1秒前
舒适的天奇完成签到 ,获得积分10
1秒前
酷波er应助yyy采纳,获得10
2秒前
上官若男应助西子阳采纳,获得10
2秒前
彭于晏应助西子阳采纳,获得10
2秒前
丘比特应助西子阳采纳,获得10
2秒前
充电宝应助西子阳采纳,获得10
2秒前
Jasper应助西子阳采纳,获得10
2秒前
汉堡包应助西子阳采纳,获得10
3秒前
SciGPT应助西子阳采纳,获得10
3秒前
英姑应助柔弱的千秋采纳,获得10
3秒前
赘婿应助西子阳采纳,获得10
3秒前
又又发布了新的文献求助10
3秒前
浮游应助彘shen采纳,获得10
3秒前
4秒前
4秒前
Sledge完成签到,获得积分10
4秒前
4秒前
123发布了新的文献求助10
5秒前
5秒前
liugm发布了新的文献求助10
5秒前
5秒前
7秒前
乐乐完成签到 ,获得积分10
7秒前
科研通AI5应助静静采纳,获得10
7秒前
搜集达人应助江城子采纳,获得10
8秒前
asqw发布了新的文献求助30
8秒前
9秒前
天天快乐应助发发采纳,获得10
9秒前
Yan0909发布了新的文献求助10
9秒前
bbbb完成签到,获得积分10
9秒前
yuan完成签到,获得积分10
10秒前
1111发布了新的文献求助10
10秒前
科研通AI5应助彭于晏采纳,获得10
10秒前
奕奕完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4854965
求助须知:如何正确求助?哪些是违规求助? 4152160
关于积分的说明 12866323
捐赠科研通 3901627
什么是DOI,文献DOI怎么找? 2143876
邀请新用户注册赠送积分活动 1163484
关于科研通互助平台的介绍 1064051