Intrusion Detection of Industrial Internet-of-Things Based on Reconstructed Graph Neural Networks

计算机科学 入侵检测系统 数据挖掘 嵌入 互联网 正规化(语言学) 人工神经网络 软件部署 网络安全 代表(政治) 图形 人工智能 图嵌入 机器学习 理论计算机科学 计算机网络 万维网 政治 政治学 法学 操作系统
作者
Yichi Zhang,Chunhua Yang,Keke Huang,Yonggang Li
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2894-2905 被引量:54
标识
DOI:10.1109/tnse.2022.3184975
摘要

Industrial Internet-of-Things (IIoT) are highly vulnerable to cyber-attacks due to their open deployment in unattended environments. Intrusion detection is an efficient solution to improve security. However, because the labeled samples are difficult to obtain, and the sample categories are imbalanced in real applications, it is difficult to obtain a reliable model. In this paper, a general framework for intrusion detection is proposed based on graph neural network technologies. In detail, a network embedding feature representation is proposed to deal with the high dimensional, redundant but categories imbalanced and rare labeled data in IIoT. To avoid the influence caused by the inaccurate network structure, a network constructor with refinement regularization is designed to amend it. At last, the network embedding representation weights and network constructor are trained together. The high accuracy and robust properties of the proposed method were verified by conducting intrusion detection tasks based on public datasets. Compared with several state-of-art algorithms, the proposed framework outperforms these methods in many evaluation metrics. In addition, a hard-in-the-loop platform is designed to test the performance in real environments. The results show that the method can not only identify different attacks but also distinguish between cyber-attacks and physical failures.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sky木槿完成签到,获得积分10
2秒前
合适尔蝶发布了新的文献求助10
4秒前
6秒前
Mic应助sky木槿采纳,获得10
8秒前
qim发布了新的文献求助10
10秒前
11秒前
鲸落发布了新的文献求助10
11秒前
王博林发布了新的文献求助10
11秒前
FashionBoy应助321采纳,获得10
12秒前
初一发布了新的文献求助10
14秒前
在水一方应助初一采纳,获得10
20秒前
20秒前
qim完成签到,获得积分20
24秒前
王星星发布了新的文献求助30
25秒前
25秒前
高调的摆酒人完成签到,获得积分10
27秒前
27秒前
28秒前
可可白发布了新的文献求助10
30秒前
初一发布了新的文献求助10
31秒前
31秒前
嘿嘿应助鲸落采纳,获得10
32秒前
SciGPT应助可可白采纳,获得10
37秒前
37秒前
搞怪香彤完成签到,获得积分10
38秒前
Jim发布了新的文献求助10
38秒前
香蕉觅云应助小李呀采纳,获得10
38秒前
虚幻沛菡发布了新的文献求助10
42秒前
CodeCraft应助marc107采纳,获得10
44秒前
45秒前
黄海发布了新的文献求助10
49秒前
喏晨完成签到 ,获得积分10
50秒前
cola121完成签到 ,获得积分10
52秒前
54秒前
希望天下0贩的0应助xhl采纳,获得10
1分钟前
传奇3应助微笑高山采纳,获得10
1分钟前
m李完成签到 ,获得积分10
1分钟前
小李呀发布了新的文献求助10
1分钟前
1分钟前
皮代谷完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Jailing People With Mental Illness While Awaiting Commitment Hearings 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5858050
求助须知:如何正确求助?哪些是违规求助? 6336337
关于积分的说明 15637726
捐赠科研通 4972179
什么是DOI,文献DOI怎么找? 2682041
邀请新用户注册赠送积分活动 1625785
关于科研通互助平台的介绍 1583030