Intrusion Detection of Industrial Internet-of-Things Based on Reconstructed Graph Neural Networks

计算机科学 入侵检测系统 数据挖掘 嵌入 互联网 正规化(语言学) 人工神经网络 软件部署 网络安全 代表(政治) 图形 人工智能 图嵌入 机器学习 理论计算机科学 计算机网络 万维网 政治 政治学 法学 操作系统
作者
Yichi Zhang,Chunhua Yang,Keke Huang,Yonggang Li
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2894-2905 被引量:54
标识
DOI:10.1109/tnse.2022.3184975
摘要

Industrial Internet-of-Things (IIoT) are highly vulnerable to cyber-attacks due to their open deployment in unattended environments. Intrusion detection is an efficient solution to improve security. However, because the labeled samples are difficult to obtain, and the sample categories are imbalanced in real applications, it is difficult to obtain a reliable model. In this paper, a general framework for intrusion detection is proposed based on graph neural network technologies. In detail, a network embedding feature representation is proposed to deal with the high dimensional, redundant but categories imbalanced and rare labeled data in IIoT. To avoid the influence caused by the inaccurate network structure, a network constructor with refinement regularization is designed to amend it. At last, the network embedding representation weights and network constructor are trained together. The high accuracy and robust properties of the proposed method were verified by conducting intrusion detection tasks based on public datasets. Compared with several state-of-art algorithms, the proposed framework outperforms these methods in many evaluation metrics. In addition, a hard-in-the-loop platform is designed to test the performance in real environments. The results show that the method can not only identify different attacks but also distinguish between cyber-attacks and physical failures.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷静苗条发布了新的文献求助30
1秒前
克劳修斯的sheep完成签到,获得积分20
1秒前
Mic应助沐风采纳,获得10
2秒前
奋斗的蓝蜗牛完成签到,获得积分10
2秒前
情怀应助鹿谷波采纳,获得10
2秒前
可爱的函函应助beryl采纳,获得10
3秒前
Vaibhav完成签到,获得积分10
3秒前
书蠹诗魔完成签到,获得积分10
5秒前
7秒前
9秒前
10秒前
11秒前
DDD完成签到,获得积分10
11秒前
科研通AI6.1应助字母采纳,获得10
12秒前
13秒前
15秒前
我是老大应助jzyy采纳,获得10
15秒前
xiesiyuan发布了新的文献求助10
17秒前
JamesPei应助Kevinsg采纳,获得10
18秒前
18秒前
19秒前
howl发布了新的文献求助10
20秒前
今后应助Northharbor采纳,获得10
21秒前
23秒前
23秒前
24秒前
Ascender发布了新的文献求助10
24秒前
jackmilton发布了新的文献求助10
25秒前
隐形曼青应助howl采纳,获得10
26秒前
hx发布了新的文献求助10
27秒前
27秒前
gaoyyuge发布了新的文献求助10
30秒前
字母发布了新的文献求助10
30秒前
SSS发布了新的文献求助10
30秒前
二十四桥明月夜完成签到,获得积分10
32秒前
科研通AI6.1应助难过手链采纳,获得100
35秒前
123321321345发布了新的文献求助10
36秒前
36秒前
khurram完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863398
求助须知:如何正确求助?哪些是违规求助? 6391189
关于积分的说明 15648736
捐赠科研通 4977385
什么是DOI,文献DOI怎么找? 2684973
邀请新用户注册赠送积分活动 1628103
关于科研通互助平台的介绍 1585802