Intrusion Detection of Industrial Internet-of-Things Based on Reconstructed Graph Neural Networks

计算机科学 入侵检测系统 数据挖掘 嵌入 互联网 正规化(语言学) 人工神经网络 软件部署 网络安全 代表(政治) 图形 人工智能 图嵌入 机器学习 理论计算机科学 计算机网络 万维网 政治 政治学 法学 操作系统
作者
Yichi Zhang,Chunhua Yang,Keke Huang,Yonggang Li
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2894-2905 被引量:51
标识
DOI:10.1109/tnse.2022.3184975
摘要

Industrial Internet-of-Things (IIoT) are highly vulnerable to cyber-attacks due to their open deployment in unattended environments. Intrusion detection is an efficient solution to improve security. However, because the labeled samples are difficult to obtain, and the sample categories are imbalanced in real applications, it is difficult to obtain a reliable model. In this paper, a general framework for intrusion detection is proposed based on graph neural network technologies. In detail, a network embedding feature representation is proposed to deal with the high dimensional, redundant but categories imbalanced and rare labeled data in IIoT. To avoid the influence caused by the inaccurate network structure, a network constructor with refinement regularization is designed to amend it. At last, the network embedding representation weights and network constructor are trained together. The high accuracy and robust properties of the proposed method were verified by conducting intrusion detection tasks based on public datasets. Compared with several state-of-art algorithms, the proposed framework outperforms these methods in many evaluation metrics. In addition, a hard-in-the-loop platform is designed to test the performance in real environments. The results show that the method can not only identify different attacks but also distinguish between cyber-attacks and physical failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助BUAAzmt采纳,获得10
1秒前
abcdefg完成签到,获得积分10
1秒前
胡图图完成签到,获得积分10
2秒前
Stanford发布了新的文献求助10
2秒前
shawfang完成签到,获得积分10
4秒前
听闻韬声依旧完成签到 ,获得积分10
5秒前
fengmian完成签到,获得积分10
5秒前
小土豆完成签到 ,获得积分10
6秒前
犹豫的忆枫完成签到,获得积分10
6秒前
CodeCraft应助明亮无颜采纳,获得10
9秒前
小草三心完成签到 ,获得积分10
9秒前
10秒前
Eusha完成签到,获得积分10
11秒前
陌上花开完成签到,获得积分10
13秒前
雨晴完成签到,获得积分10
14秒前
BUAAzmt发布了新的文献求助10
16秒前
zxh完成签到,获得积分10
16秒前
yoyocici1505完成签到,获得积分10
19秒前
大神水瓶座完成签到,获得积分10
22秒前
酷波er应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
cdercder应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得20
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
cdercder应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
cdercder应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得30
24秒前
TUTU应助科研通管家采纳,获得10
24秒前
24秒前
霍师傅发布了新的文献求助10
30秒前
爸爸完成签到,获得积分10
32秒前
lk65734完成签到,获得积分10
35秒前
忧伤的八宝粥完成签到,获得积分10
35秒前
123456完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323216
关于积分的说明 10213166
捐赠科研通 3038523
什么是DOI,文献DOI怎么找? 1667522
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275