Context-Aware Network for Semantic Segmentation Toward Large-Scale Point Clouds in Urban Environments

点云 计算机科学 分割 增采样 背景(考古学) 特征(语言学) 人工智能 云计算 特征提取 古生物学 语言学 哲学 图像(数学) 生物 操作系统
作者
Chun Liu,Doudou Zeng,Akram Akbar,Hangbin Wu,Shoujun Jia,Zeran Xu,Han Yue
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:43
标识
DOI:10.1109/tgrs.2022.3182776
摘要

Point cloud semantic segmentation in urban scenes plays a vital role in intelligent city modeling, autonomous driving, and urban planning. Point cloud semantic segmentation based on deep learning methods has achieved significant improvement. However, it is also challenging for accurate semantic segmentation in large scenes due to complex elements, variety of scene classes, occlusions, and noise. Besides, most methods need to split the original point cloud into multiple blocks before processing and cannot directly deal with the point clouds on a large scale. We propose a novel context-aware network (CAN) that can directly deal with large-scale point clouds. In the proposed network, a Local Feature Aggregation Module (LFAM) is designed to preserve rich geometric details in the raw point cloud and reduce the information loss during feature extraction. Then, in combination with a Global Context Aggregation Module (GCAM), capture long-range dependencies to enhance the network feature representation and suppress the noise. Finally, a Context-Aware Upsampling Module (CAUM) is embedded into the proposed network to capture the global perception from a broad perspective. The ensemble of low-level and high-level features facilitates the effectiveness and efficiency of 3D point cloud feature refinement. Comprehensive experiments were carried out on three large-scale point cloud datasets in both outdoor and indoor environments to evaluate the performance of the proposed network. The results show that the proposed method outperformed the state-of-the-art representative semantic segmentation networks, and the overall accuracy (OA) of Tongji-3D, Semantic3D, and S3DIS is 96.01%, 95.0%, and 88.55%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助典雅煎蛋采纳,获得30
刚刚
David发布了新的文献求助50
刚刚
1秒前
2秒前
烂漫书白发布了新的文献求助10
2秒前
chenjingjing发布了新的文献求助10
3秒前
3秒前
4秒前
我爱螺蛳粉完成签到 ,获得积分10
5秒前
Wonder罗发布了新的文献求助10
5秒前
潇洒映冬发布了新的文献求助10
5秒前
SYLH应助神奇的光子采纳,获得20
5秒前
Osprey_Lee发布了新的文献求助10
5秒前
小爱发布了新的文献求助10
7秒前
7秒前
小赟发布了新的文献求助10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
CipherSage应助潇绡采纳,获得30
9秒前
852应助科研通管家采纳,获得10
9秒前
鼠小姐应助科研通管家采纳,获得10
9秒前
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
丘比特应助qiong采纳,获得10
11秒前
cmy发布了新的文献求助10
13秒前
jinjinj完成签到 ,获得积分10
13秒前
66666发布了新的文献求助10
14秒前
14秒前
英姑应助wuyongmei采纳,获得10
15秒前
完美世界应助Jackie_Li采纳,获得10
15秒前
在水一方应助Jackie_Li采纳,获得10
15秒前
爆米花应助ANDRT采纳,获得10
17秒前
17秒前
朵朵完成签到,获得积分10
18秒前
18秒前
19秒前
宋宋完成签到 ,获得积分10
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807468
求助须知:如何正确求助?哪些是违规求助? 3352217
关于积分的说明 10357930
捐赠科研通 3068242
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810014
科研通“疑难数据库(出版商)”最低求助积分说明 765853