A Collaborative Alignment Framework of Transferable Knowledge Extraction for Unsupervised Domain Adaptation

计算机科学 域适应 一致性(知识库) 匹配(统计) 领域(数学分析) 适应(眼睛) 情报检索 人工智能 机器学习 数据挖掘 数学 分类器(UML) 统计 光学 物理 数学分析
作者
Binhui Xie,Shuang Li,Fangrui Lv,Chi Harold Liu,Guoren Wang,Dapeng Wu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
被引量:51
标识
DOI:10.1109/tkde.2022.3185233
摘要

Unsupervised domain adaptation (UDA) aims to utilize knowledge from a label-rich source domain to understand a similar yet distinct unlabeled target domain. Notably, global distribution statistics across domains and local semantic characteristics across samples, are two essential factors of data analysis that should be fully explored. Most existing UDA approaches either harness only one of them or fail to closely associate them for efficient adaptation. In this work, we propose a unified framework, called Collaborative Alignment Framework (CAF), which simultaneously reduces the global domain discrepancy and preserves the local semantic consistency for cross-domain knowledge transfer in a collaborative manner. Specifically, for domain-oriented alignment, we utilize adversarial training or minimize the Wasserstein distance between the two distributions to learn domain-level invariant representations. For semantic-oriented matching, we capture the semantic discrepancy between the predictions of two diverse task-specific classifiers and enhance the features of target data to be near the support of the source data class-wisely, which promotes semantic consistency across domains effectively. These two adaptation processes can be deeply intertwined in CAF via collaborative training, thus CAF can learn domain-invariant and semantic-consistent feature representations. Extensive experiments on four popular benchmarks, including DomainNet, VisDA-2017, Office-31, and ImageCLEF, demonstrate the proposed methods significantly outperform the existing methods, especially on the large-scale dataset. The code is available at https://github.com/BIT-DA/CAF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的盈发布了新的文献求助10
刚刚
科研通AI2S应助聪明含桃采纳,获得10
刚刚
冲冲冲发布了新的文献求助10
1秒前
英俊的铭应助昏睡的小凡采纳,获得10
1秒前
Chen发布了新的文献求助10
1秒前
1秒前
3秒前
鲤鱼奇异果完成签到,获得积分10
3秒前
wanci应助着急的大米采纳,获得10
3秒前
5秒前
5秒前
哈哈哈哈完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
瓜姐应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得150
6秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
2568269431发布了新的文献求助10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
丘比特应助辛勤的志泽采纳,获得10
9秒前
9秒前
b15966013195发布了新的文献求助30
10秒前
雪白鸿涛发布了新的文献求助10
11秒前
期待未来的自己应助zcfs001采纳,获得10
12秒前
期待未来的自己应助zcfs001采纳,获得10
12秒前
辛勤的志泽完成签到,获得积分10
13秒前
13秒前
XieQinxie发布了新的文献求助10
14秒前
醉熏的如雪完成签到,获得积分10
15秒前
雪白鸿涛完成签到,获得积分10
16秒前
HXY发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800211
求助须知:如何正确求助?哪些是违规求助? 3345518
关于积分的说明 10325543
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680700
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763547