Investigating Electrode Reactions in Vanadium Redox Flow Batteries - a Distribution of Relaxation Times Analysis

流动电池 介电谱 氧化还原 储能 电解质 材料科学 极化(电化学) 电极 荷电状态 电化学 电池(电) 纳米技术 工艺工程 化学 工程类 热力学 功率(物理) 物理化学 冶金 物理
作者
Monja Schilling,Michael Braig,Kerstin Köble,Roswitha Zeis
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (48): 2012-2012
标识
DOI:10.1149/ma2022-01482012mtgabs
摘要

Due to the increasing energy demand worldwide and the urgency of action because of climate change, new energy storage devices are needed to balance the fluctuations of renewable energy sources. The Vanadium Redox Flow Battery (VRFB) is a promising technology for large-scale energy storage but still needs to overcome significant lifetime and efficiency challenges, which are decreased by polarization losses during operation. It is essential to conduct experiments in a setup that closely mimics the cell's operating conditions to analyze the ongoing processes in a VRFB. Therefore, setups reflecting a half cell are well-suited. Thus, new insights into the reaction and transport processes in a VRFB can be gained. Electrochemical Impedance Spectroscopy (EIS) combined with Distribution of Relaxation Times (DRT) analysis is a well-suited method to investigate electrode reactions. This combination of methods is frequently used in research for lithium-ion batteries or in our group for fuel cell characterization (1-3). To the best of our knowledge, there is no study using EIS and DRT analysis to analyze processes in a model half cell in VRFB research published yet, and just very few studies on characterization in full cell-like setups are available (4). Here, we present a novel 3D printed flow cell for investigations under application-oriented conditions, designed to ensure steady-state conditions during the measurements. These studies focus on the characterization of the processes in the positive half cell by EIS to deepen the knowledge about the polarization losses in VRFBs. The vanadium-containing electrolyte is continuously pumped through the cell during the experiments to guarantee consistent conditions while EIS measurements are performed. The electrolyte flows through the carbon paper stack used as electrode material, undergoing an electrochemical reaction. Here, either the oxidation of vanadium(IV) to vanadium(V) or the reduction from vanadium(V) to vanadium(IV) occurs. The recorded data were analyzed with the DRT method, which allows the separation of physicochemical processes on different time scales. Parameters like the temperature, the flow rate, the electrolyte concentration, and the electrolyte species were varied independently to identify the individual processes in the positive half cell of a VRFB. This setup enables electrochemical impedance measurements of high quality, which is essential for a reliable DRT analysis. We could assign the peaks in the DRT spectrum to the electrochemical reaction, the convective transport through the electrode structure, and the diffusion processes of the vanadium species. Thus, we could identify the individual processes in the positive half cell of the VRFB and their contributions to the overall impedance. This information is vital in search of optimized operating conditions with reduced polarization losses. 1. M. A. Danzer, Batteries, 5 (3), 53 (2019). 2. A. Weiß, S. Schindler, S. Galbiati, M. A. Danzer and R. Zeis, Electrochimica Acta, 230 , 391–398 (2017). 3. N. Bevilacqua, M. A. Schmid and R. Zeis, Journal of Power Sources, 471, 228469 (2020). 4. J. Schneider, T. Tichter, P. Khadke, R. Zeis and C. Roth, Electrochimica Acta, 336 , 135510 (2020). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiejiaye发布了新的文献求助10
刚刚
刚刚
韶韶i完成签到,获得积分10
1秒前
1秒前
传奇3应助飘逸萍采纳,获得10
1秒前
优雅枫叶发布了新的文献求助10
3秒前
Syyyy完成签到,获得积分10
3秒前
领导范儿应助无人深空采纳,获得10
4秒前
程平完成签到,获得积分20
4秒前
YY发布了新的文献求助10
4秒前
4秒前
善学以致用应助小鹿采纳,获得10
4秒前
科研通AI6应助自觉紫安采纳,获得10
5秒前
Orange应助称心誉采纳,获得10
5秒前
cmr发布了新的文献求助10
6秒前
顾矜应助lawang采纳,获得10
7秒前
赘婿应助lawang采纳,获得10
7秒前
彭于晏应助lawang采纳,获得10
7秒前
情怀应助lawang采纳,获得10
7秒前
传奇3应助lawang采纳,获得10
7秒前
8秒前
8秒前
8秒前
10秒前
深情安青应助韶韶i采纳,获得10
10秒前
11秒前
崔晴晴完成签到,获得积分20
11秒前
11秒前
斯文丹彤完成签到,获得积分20
11秒前
隐形曼青应助魔幻蓉采纳,获得10
12秒前
阅遍SCI完成签到,获得积分10
13秒前
15秒前
田田田完成签到,获得积分10
15秒前
赵博完成签到,获得积分10
16秒前
我是老大应助ylt采纳,获得10
16秒前
汉堡包应助今天炒鱿鱼采纳,获得30
16秒前
Akim应助董科研严采纳,获得10
16秒前
16秒前
17秒前
orixero应助明理小凝采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662345
求助须知:如何正确求助?哪些是违规求助? 4842231
关于积分的说明 15099514
捐赠科研通 4820844
什么是DOI,文献DOI怎么找? 2580317
邀请新用户注册赠送积分活动 1534341
关于科研通互助平台的介绍 1492985