The Prediction of Carbon Emission Information in Yangtze River Economic Zone by Deep Learning

长江 温室气体 环境科学 支持向量机 投资(军事) 碳纤维 计算机科学 人工神经网络
作者
Huafang Huang,Xiaomao Wu,Xianfu Cheng
出处
期刊:Land [Multidisciplinary Digital Publishing Institute]
卷期号:10 (12): 1380-1380
标识
DOI:10.3390/land10121380
摘要

This study aimed to respond to the national “carbon peak” mid-and long-term policy plan, comprehensively promote energy conservation and emission reduction, and accurately manage and predict carbon emissions. Firstly, the proposed method analyzes the Yangtze River Economic Belt as well as its “carbon peak” and carbon emissions. Secondly, a support vector regression (SVR) machine prediction model is proposed for the carbon emission information prediction of the Yangtze River Economic Zone. This experiment uses a long short-term memory neural network (LSTM) to train the model and realize the experiment’s prediction of carbon emissions. Finally, this study obtained the fitting results of the prediction model and the training model, as well as the prediction results of the prediction model. Information indicators such as the scale of industry investment, labor efficiency output, and carbon emission intensity that affect carbon emissions in the “Yangtze River Economic Belt” basin can be used to accurately predict the carbon emissions information under this model. Therefore, the experiment shows that the SVR model for solving complex nonlinear problems can achieve a relatively excellent prediction effect under the training of LSTM. The deep learning model adopted herein realized the accurate prediction of carbon emission information in the Yangtze River Economic Zone and expanded the application space of deep learning. It provides a reference for the model in related fields of carbon emission information prediction, which has certain reference significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuy03发布了新的文献求助10
1秒前
Summer发布了新的文献求助10
1秒前
2秒前
小王发布了新的文献求助10
2秒前
小柚发布了新的文献求助10
3秒前
LL完成签到,获得积分10
3秒前
Gengar发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
无花果应助罗克采纳,获得10
4秒前
同心结关注了科研通微信公众号
4秒前
czh完成签到,获得积分10
5秒前
lznd发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
王小西发布了新的文献求助10
6秒前
6秒前
爆米花应助我相信采纳,获得10
7秒前
黑马完成签到,获得积分10
7秒前
7秒前
君子扑火完成签到,获得积分10
8秒前
研友_VZG7GZ应助宋文祥采纳,获得10
8秒前
9秒前
nnn发布了新的文献求助10
9秒前
DDDD发布了新的文献求助30
9秒前
9秒前
9秒前
czh发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
酷波er应助MASAMI采纳,获得30
11秒前
孟筱发布了新的文献求助10
11秒前
11秒前
英姑应助半载诗采纳,获得10
11秒前
12秒前
12秒前
善学以致用应助111采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4419026
求助须知:如何正确求助?哪些是违规求助? 3899900
关于积分的说明 12127358
捐赠科研通 3545865
什么是DOI,文献DOI怎么找? 1945800
邀请新用户注册赠送积分活动 986054
科研通“疑难数据库(出版商)”最低求助积分说明 882306